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The experiments with solar, atmospheric, reactor and accelerator
neutrinos have provided compelling evidences for oscillations of
neutrinos caused by nonzero neutrino masses and neutrino mixing.
The data imply the existence of 3-neutrino mixing in vacuum. We
review the theory of neutrino oscillations, the phenomenology of
neutrino mixing, the problem of the nature - Dirac or Majorana, of
massive neutrinos, the issue of CP violation in the lepton sector, and
the current data on the neutrino masses and mixing parameters. The
open questions and the main goals of future research in the field of
neutrino mixing and oscillations are outlined.

13.1. Introduction: Massive neutrinos and neutrino
mixing

It is a well-established experimental fact that the neutrinos and
antineutrinos which take part in the standard charged current (CC)
and neutral current (NC) weak interaction are of three varieties
(types) or flavours: electron, νe and ν̄e, muon, νμ and ν̄μ, and tauon,
ντ and ν̄τ . The notion of neutrino type or flavour is dynamical: νe

is the neutrino which is produced with e+, or produces an e− in
CC weak interaction processes; νμ is the neutrino which is produced
with μ+, or produces μ−, etc. The flavour of a given neutrino is
Lorentz invariant. Among the three different flavour neutrinos and
antineutrinos, no two are identical. Correspondingly, the states which
describe different flavour neutrinos must be orthogonal (within the
precision of the corresponding data): 〈νl′ |νl〉 = δl′l, 〈ν̄l′ |ν̄l〉 = δl′l,
〈ν̄l′ |νl〉 = 0.

It is also well-known from the existing data (all neutrino experiments
were done so far with relativistic neutrinos or antineutrinos), that the
flavour neutrinos νl (antineutrinos ν̄l), are always produced in weak
interaction processes in a state that is predominantly left-handed
(LH) (right-handed (RH)). To account for this fact, νl and ν̄l are
described in the Standard Model (SM) by a chiral LH flavour neutrino
field νlL(x), l = e, μ, τ . For massless νl, the state of νl (ν̄l) which
the field νlL(x) annihilates (creates) is with helicity (-1/2) (helicity
+1/2). If νl has a non-zero mass m(νl), the state of νl (ν̄l) is a linear
superposition of the helicity (-1/2) and (+1/2) states, but the helicity
+1/2 state (helicity (-1/2) state) enters into the superposition with
a coefficient ∝ m(νl)/E, E being the neutrino energy, and thus is
strongly suppressed. Together with the LH charged lepton field lL(x),
νlL(x) forms an SU(2)L doublet. In the absence of neutrino mixing
and zero neutrino masses, νlL(x) and lL(x) can be assigned one unit
of the additive lepton charge Ll and the three charges Ll, l = e, μ, τ ,
are conserved by the weak interaction.

At present there is no evidence for the existence of states of
relativistic neutrinos (antineutrinos), which are predominantly right-
handed, νR (left-handed, ν̄L). If RH neutrinos and LH antineutrinos
exist, their interaction with matter should be much weaker than
the weak interaction of the flavour LH neutrinos νl and RH
antineutrinos ν̄l, i.e., νR (ν̄L) should be “sterile” or “inert” neutrinos
(antineutrinos) [1]. In the formalism of the Standard Model, the
sterile νR and ν̄L can be described by SU(2)L singlet RH neutrino
fields νR(x). In this case, νR and ν̄L will have no gauge interactions,
i.e., will not couple to the weak W± and Z0 bosons. If present in
an extension of the Standard Model, the RH neutrinos can play a
crucial role i) in the generation of neutrino masses and mixing, ii) in
understanding the remarkable disparity between the magnitudes of
neutrino masses and the masses of the charged leptons and quarks, and
iii) in the generation of the observed matter-antimatter asymmetry of
the Universe (via the leptogenesis mechanism [2]) . In this scenario
which is based on the see-saw theory [3], there is a link between
the generation of neutrino masses and the generation of the baryon
asymmetry of the Universe. The simplest hypothesis is that to each
LH flavour neutrino field νlL(x) there corresponds a RH neutrino field
νlR(x), l = e, μ, τ .

The experiments with solar, atmospheric and reactor neutrinos
[4–16] have provided compelling evidences for the existence of neutrino

oscillations [17,18], transitions in flight between the different flavour
neutrinos νe, νμ, ντ (antineutrinos ν̄e, ν̄μ, ν̄τ ), caused by nonzero
neutrino masses and neutrino mixing. Strong evidences for oscillations
of muon neutrinos were obtained also in the long-baseline accelerator
neutrino experiments K2K [20] and MINOS [21,22]. In addition, a
short-baseline accelerator experiment LSND [23] observed a possible
indication of ν̄μ → ν̄e oscillations. If confirmed, this result required
the existence of at least one additional neutrino type. More recently,
MiniBooNE searched for νμ → νe transitions, and if the neutrinos
oscillate in the same way as antineutrinos, the MiniBooNE result [24]
does not support the interpretation of the LSND data in terms of
ν̄μ → ν̄e oscillations.

The existence of flavour neutrino oscillations implies that if a
neutrino of a given flavour, say νμ, with energy E is produced in some
weak interaction process, at a sufficiently large distance L from the νμ

source the probability to find a neutrino of a different flavour, say ντ ,
P (νμ → ντ ; E, L), is different from zero. P (νμ → ντ ; E, L) is called the
νμ → ντ oscillation or transition probability. If P (νμ → ντ ; E, L) �= 0,
the probability that νμ will not change into a neutrino of a different
flavour, i.e., the “νμ survival probability” P (νμ → νμ; E, L), will be
smaller than one. If only muon neutrinos νμ are detected in a given
experiment and they take part in oscillations, one would observe a
“disappearance” of muon neutrinos on the way from the νμ source
to the detector. As a consequence of the results of the experiments
quoted above the existence of oscillations or transitions of the solar νe,
atmospheric νμ and ν̄μ, accelerator νμ (at L ∼ 250 km and L ∼ 730
km) and reactor ν̄e (at L ∼ 180 km), driven by nonzero neutrino
masses and neutrino mixing, was firmly established. There are strong
indications that the solar νe transitions are affected by the solar
matter [25,26].

Oscillations of neutrinos are a consequence of the presence of flavour
neutrino mixing, or lepton mixing, in vacuum. In the formalism of
local quantum field theory, used to construct the Standard Model,
this means that the LH flavour neutrino fields νlL(x), which enter
into the expression for the lepton current in the CC weak interaction
Lagrangian, are linear combinations of the fields of three (or more)
neutrinos νj , having masses mj �= 0:

νlL(x) =
∑
j

Ulj νjL(x), l = e, μ, τ, (13.1)

where νjL(x) is the LH component of the field of νj possessing a mass
mj and U is a unitary matrix - the neutrino mixing matrix [1,17,18].
The matrix U is often called the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) or Maki-Nakagawa-Sakata (MNS) mixing matrix. Obviously,
Eq. (13.1) implies that the individual lepton charges Ll, l = e, μ, τ ,
are not conserved.

All existing neutrino oscillation data, except for the LSND result
[23], can be described assuming 3-flavour neutrino mixing in vacuum.
The data on the invisible decay width of the Z0-boson is compatible
with only 3 light flavour neutrinos coupled to Z0 [19]. The number
of massive neutrinos νj , n, can, in general, be bigger than 3, n > 3,
if, for instance, there exist sterile neutrinos and they mix with the
flavour neutrinos. It follows from the existing data that at least 3 of
the neutrinos νj , say ν1, ν2, ν3, must be light, m1,2,3 � 1 eV, and
must have different masses, m1 �= m2 �= m3. At present there are no
compelling experimental evidences for the existence of more than 3
light neutrinos.

Being electrically neutral, the neutrinos with definite mass νj can
be Dirac fermions or Majorana particles [27,28]. The first possibility
is realised when there exists a lepton charge carried by the neutrinos
νj , which is conserved by the particle interactions. This could be, e.g.,
the total lepton charge L = Le + Lμ + Lτ : L(νj) = 1, j = 1, 2, 3. In
this case the neutrino νj has a distinctive antiparticle ν̄j : ν̄j differs
from νj by the value of the lepton charge L it carries, L(ν̄j) = − 1.
The massive neutrinos νj can be Majorana particles if no lepton
charge is conserved (see, e.g., Ref. 29). A massive Majorana particle
χj is identical with its antiparticle χ̄j : χj ≡ χ̄j . On the basis of
the existing neutrino data it is impossible to determine whether the
massive neutrinos are Dirac or Majorana fermions.
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In the case of n neutrino flavours and n massive neutrinos, the n×n
unitary neutrino mixing matrix U can be parametrised by n(n − 1)/2
Euler angles and n(n + 1)/2 phases. If the massive neutrinos νj are
Dirac particles, only (n − 1)(n − 2)/2 phases are physical and can be
responsible for CP violation in the lepton sector. In this respect the
neutrino (lepton) mixing with Dirac massive neutrinos is similar to
the quark mixing. For n = 3 there is just one CP violating phase in U ,
which is usually called “the Dirac CP violating phase.” CP invariance
holds if (in a certain standard convention) U is real, U∗ = U .

If, however, the massive neutrinos are Majorana fermions, νj ≡ χj ,
the neutrino mixing matrix U contains n(n− 1)/2 CP violation phases
[30,31], i.e., by (n − 1) phases more than in the Dirac neutrino
case: in contrast to Dirac fields, the massive Majorana neutrino fields
cannot “absorb” phases. In this case U can be cast in the form [30]

U = V P (13.2)

where the matrix V contains the (n − 1)(n − 2)/2 Dirac CP violation
phases, while P is a diagonal matrix with the additional (n − 1)
Majorana CP violation phases α21, α31,..., αn1,

P = diag
(
1, ei

α21
2 , ei

α31
2 , ..., ei

αn1
2

)
. (13.3)

The Majorana phases will conserve CP if [32] αj1 = πqj , qj = 0, 1, 2,
j = 2, 3, ..., n. In this case exp[i(αj1−αk1)] = ±1 has a simple physical
interpretation: this is the relative CP-parity of Majorana neutrinos
χj and χk. The condition of CP invariance of the leptonic CC weak
interaction in the case of mixing and massive Majorana neutrinos
reads [29]:

U∗
lj = Ulj ρj , ρj =

1
i
ηCP (χj) = ±1 , (13.4)

where ηCP (χj) = iρj = ±i is the CP parity of the Majorana neutrino
χj [32]. Thus, if CP invariance holds, the elements of U are either
real or purely imaginary.

In the case of n = 3 there are altogether 3 CP violation phases
- one Dirac and two Majorana. Even in the mixing involving only
2 massive Majorana neutrinos there is one physical CP violation
Majorana phase. In contrast, the CC weak interaction is automatically
CP-invariant in the case of mixing of two massive Dirac neutrinos or
of two quarks.

13.2. Neutrino oscillations in vacuum

Neutrino oscillations are a quantum mechanical consequence of the
existence of nonzero neutrino masses and neutrino (lepton) mixing,
Eq. (13.1), and of the relatively small splitting between the neutrino
masses. The neutrino mixing and oscillation phenomena are analogous
to the K0 − K̄0 and B0 − B̄0 mixing and oscillations.

In what follows we will present a simplified version of the derivation
of the expressions for the neutrino and antineutrino oscillation
probabilities. The complete derivation would require the use of the
wave packet formalism for the evolution of the massive neutrino states,
or, alternatively, of the field-theoretical approach, in which one takes
into account the processes of production, propagation and detection of
neutrinos [33].

Suppose the flavour neutrino νl is produced in a CC weak
interaction process and after a time T it is observed by a neutrino
detector, located at a distance L from the neutrino source and capable
of detecting also neutrinos νl′ , l′ �= l. We will consider the evolution
of the neutrino state |νl〉 in the frame in which the detector is at rest
(laboratory frame). The oscillation probability, as we will see, is a
Lorentz invariant quantity. If lepton mixing, Eq. (13.1), takes place
and the masses mj of all neutrinos νj are sufficiently small, the state
of the neutrino νl, |νl〉, will be a coherent superposition of the states
|νj〉 of neutrinos νj :

|νl〉 =
∑
j

U∗
lj |νj ; p̃j〉, l = e, μ, τ , (13.5)

where U is the neutrino mixing matrix and p̃j is the 4-momentum of
νj [34].

We will consider the case of relativistic neutrinos νj , which
corresponds to the conditions in both past and currently planned
future neutrino oscillation experiments [36]. In this case the state
|νj ; p̃j〉 practically coincides with the helicity (-1) state |νj , L; p̃j〉 of
the neutrino νj , the admixture of the helicity (+1) state |νj , R; p̃j〉
in |νj ; p̃j〉 being suppressed due to the factor ∼ mj/Ej , where Ej is
the energy of νj . If νj are Majorana particles, νj ≡ χj , due to the
presence of the helicity (+1) state |χj , R; p̃j〉 in |χj ; p̃j〉, the neutrino
νl can produce an l+ (instead of l−) when it interacts with nucleons.
The cross section of such a |ΔLl| = 2 process is suppressed by the
factor (mj/Ej)2, which renders the process unobservable at present.

If the number n of massive neutrinos νj is bigger than 3 due to a
mixing between the active flavour and sterile neutrinos, one will have
additional relations similar to that in Eq. (13.5) for the state vectors
of the (predominantly LH) sterile antineutrinos. In the case of just
one RH sterile neutrino field νsR(x), for instance, we will have in
addition to Eq. (13.5):

|ν̄sL〉 =
4∑

j=1

U∗
sj |νj ; p̃j〉 ∼=

4∑
j=1

U∗
sj |νj , L; p̃j〉 , (13.6)

where the neutrino mixing matrix U is now a 4 × 4 unitary matrix.
For the state vector of RH flavour antineutrino ν̄l, produced in a

CC weak interaction process we similarly get:

|ν̄l〉 =
∑
j

Ulj |ν̄j ; p̃j〉 ∼=
∑
j=1

Ulj |ν̄j , R; p̃j〉, l = e, μ, τ , (13.7)

where |ν̄j , R; p̃j〉 is the helicity (+1) state of the antineutrino ν̄j if
νj are Dirac fermions, or the helicity (+1) state of the neutrino
νj ≡ ν̄j ≡ χj if the massive neutrinos are Majorana particles. Thus, in
the latter case we have in Eq. (13.7): |ν̄j ; p̃j〉 ∼= |νj , R; p̃j〉 ≡ |χj , R; p̃j〉.
The presence of the matrix U in Eq. (13.7) (and not of U∗) follows
directly from Eq. (13.1).

We will assume in what follows that the spectrum of masses of
neutrinos is not degenerate: mj �= mk, j �= k. Then the states |νj ; p̃j〉
in the linear superposition in the r.h.s. of Eq. (13.5) will have, in
general, different energies and different momenta, independently of
whether they are produced in a decay or interaction process: p̃j �= p̃k,

or Ej �= Ek, pj �= pk, j �= k, where Ej =
√

p2
j + m2

j , pj ≡ |pj |.
The deviations of Ej and pj from the values for a massless neutrino
E and p = E are proportional to m2

j/E0, E0 being a characteristic
energy of the process, and are extremely small. In the case of π+ →
μ+ + νμ decay at rest, for instance, we have: Ej = E + m2

j/(2mπ),
pj = E − ξm2

j/(2E), where E = (mπ/2)(1 − m2
μ/m2

π) ∼= 30 MeV,
ξ = (1 + m2

μ/m2
π)/2 ∼= 0.8, and mμ and mπ are the μ+ and π+

masses. Taking mj = 1 eV we find: Ej
∼= E (1 + 1.2 × 10−16) and

pj
∼= E (1 − 4.4 × 10−16).
Suppose that the neutrinos are observed via a CC weak interaction

process and that in the detector’s rest frame they are detected after
time T after emission, after traveling a distance L. Then the amplitude
of the probability that neutrino νl′ will be observed if neutrino νl was
produced by the neutrino source can be written as [33,35,37]:

A(νl → νl′) =
∑
j

Ul′j Dj U†
jl , l, l′ = e, μ, τ , (13.8)

where Dj = Dj(pj ; L, T ) describes the propagation of νj between
the source and the detector, U

†
jl and Ul′j are the amplitudes to find

νj in the initial and in the final flavour neutrino state, respectively.
It follows from relativistic Quantum Mechanics considerations that
[33,35]

Dj ≡ Dj(p̃j ; L, T ) = e−ip̃j (xf−x0) = e−i(EjT−pjL) , pj ≡ |pj | ,
(13.9)

where [38] x0 and xf are the space-time coordinates of the points of
neutrino production and detection, T = (tf − t0) and L = k(xf − x0),
k being the unit vector in the direction of neutrino momentum,
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pj = kpj. What is relevant for the calculation of the probability
P (νl → νl′) = |A(νl → νl′)|2 is the interference factor DjD

∗
k which

depends on the phase

δϕjk = (Ej − Ek)T − (pj − pk)L = (Ej − Ek)
[
T − Ej + Ek

pj + pk
L

]

+
m2

j − m2
k

pj + pk
L . (13.10)

Some authors [39] have suggested that the distance traveled
by the neutrinos L and the time interval T are related by T =
(Ej +Ek)L/(pj +pk) = L/v̄, v̄ = (Ej/(Ej +Ek))vj +(Ek/(Ej +Ek))vk
being the “average” velocity of νj and νk, where vj,k = pj,k/Ej,k.
In this case the first term in the r.h.s. of Eq. (13.10) vanishes. The
indicated relation has not emerged so far from any dynamical wave
packet calculations. We arrive at the same conclusion concerning
the term under discussion in Eq. (13.10) if one assumes [40] that
Ej = Ek = E0. Finally, it was proposed in Ref. 37 and Ref. 41 that
the states of νj and ν̄j in Eq. (13.5) and Eq. (13.7) have the same
3-momentum, pj = pk = p. Under this condition the first term in the
r.h.s. of Eq. (13.10) is negligible, being suppressed by the additional
factor (m2

j + m2
k)/p2 since for relativistic neutrinos L = T up to terms

∼ m2
j,k/p2. We arrive at the same conclusion if Ej �= Ek, pj �= pk,

j �= k, and we take into account that neutrinos are relativistic and
therefore, up to corrections ∼ m2

j,k/E2
j,k, we have L ∼= T (see, e.g., C.

Giunti quoted in Ref. 33).
Although the cases considered above are physically quite different,

they lead to the same result for the phase difference δϕjk. Thus, we
have:

δϕjk
∼=

m2
j − m2

k

2p
L = 2π

L

Lv
jk

sgn(m2
j − m2

k) , (13.11)

where p = (pj + pk)/2 and

Lv
jk = 4π

p

|Δm2
jk|

∼= 2.48 m
p[MeV ]

|Δm2
jk|[eV 2]

(13.12)

is the neutrino oscillation length associated with Δm2
jk. We can safely

neglect the dependence of pj and pk on the masses mj and mk and
consider p to be the zero neutrino mass momentum, p = E. The phase
difference δϕjk, Eq. (13.11), is Lorentz-invariant.

Eq. (13.9) corresponds to a plane-wave description of the
propagation of neutrinos νj . It accounts only for the movement of the
center of the wave packet describing νj . In the wave packet treatment
of the problem, the interference between the states of νj and νk is
subject to a number of conditions [33], the localisation condition and
the condition of overlapping of the wave packets of νj and νk at the
detection point being the most important. For relativistic neutrinos,
the localisation condition reads: σxP , σxD < Lv

jk/(2π), σxP (D) being
the spatial width of the production (detection) wave packet. Thus,
the interference will not be suppressed if the spatial width of the
neutrino wave packets detetermined by the neutrino production and
detection processes is smaller than the corresponding oscillation length
in vacuum. In order for the interference to be nonzero, the wave
packets describing νj and νk should also overlap in the point of
neutrino detection. This requires that the spatial separation between
the two wave packets at the point of neutrinos detection, caused
by the two wave packets having different group velocities vj �= vk,
satisfies |(vj − vk)T | 	 max(σxP , σxD). If the interval of time T is
not measured, T in the preceding condition must be replaced by the
distance L between the neutrino source and the detector (for further
discussion see, e.g., [33,35,37]) .

For the νl → νl′ and ν̄l → ν̄l′ oscillation probabilities we get from
Eq. (13.8), Eq. (13.9), and Eq. (13.11):

P (νl → νl′) =
∑
j

|Ul′j |2 |Ulj |2 + 2
∑
j>k

|Ul′j U∗
lj Ulk U∗

l′k|

cos
(Δm2

jk

2p
L − φl′l;jk

)
, (13.13)

P (ν̄l → ν̄l′) =
∑
j

|Ul′j |2 |Ulj |2 + 2
∑
j>k

|Ul′j U∗
lj Ulk U∗

l′k|

cos
(Δm2

jk

2p
L + φl′l;jk

)
, (13.14)

where l, l′ = e, μ, τ and φl′l;jk = arg
(
Ul′j U∗

lj Ulk U∗
l′k

)
. It follows

from Eq. (13.8) - Eq. (13.10) that in order for neutrino oscillations
to occur, at least two neutrinos νj should not be degenerate in mass
and lepton mixing should take place, U �= 1. The neutrino oscillations
effects can be large if we have

|Δm2
jk|

2p
L = 2π

L

Lv
jk

� 1 , j �= k . (13.15)

at least for one Δm2
jk. This condition has a simple physical

interpretation: the neutrino oscillation length Lv
jk should be of the

order of, or smaller, than source-detector distance L, otherwise the
oscillations will not have time to develop before neutrinos reach the
detector.

We see from Eq. (13.13) and Eq. (13.14) that P (νl → νl′) =
P (ν̄l′ → ν̄l), l, l′ = e, μ, τ . This is a consequence of CPT invariance.
The conditions of CP and T invariance read [30,42,43]: P (νl →
νl′) = P (ν̄l → ν̄l′), l, l′ = e, μ, τ (CP), P (νl → νl′) = P (νl′ → νl),
P (ν̄l → ν̄l′) = P (ν̄l′ → ν̄l), l, l′ = e, μ, τ (T). In the case of CPT
invariance, which we will assume to hold throughout this article,
we get for the survival probabilities: P (νl → νl) = P (ν̄l → ν̄l),
l, l′ = e, μ, τ . Thus, the study of the “disappearance” of νl and ν̄l,
caused by oscillations in vacuum, cannot be used to test whether
CP invariance holds in the lepton sector. It follows from Eq. (13.13)
and Eq. (13.14) that we can have CP violation effects in neutrino
oscillations only if φl′l;jk �= πq, q = 0, 1, 2, i.e., if Ul′j U∗

lj Ulk U∗
l′k, and

therefore U itself, is not real. As a measure of CP and T violation in
neutrino oscillations we can consider the asymmetries:

A
(l′l)
CP ≡ P (νl → νl′)−P (ν̄l → ν̄l′) , A

(l′l)
T ≡ P (νl → νl′)−P (νl′ → νl) .

(13.16)

CPT invariance implies: A
(l′l)
CP = −A

(ll′)
CP , A

(l′l)
T = P (ν̄l′ → ν̄l)−P (ν̄l →

ν̄l′) = A
(l′l)
CP . It follows further directly from Eq. (13.13) and

Eq. (13.14) that

A
(l′l)
CP = 4

∑
j>k

Im
(
Ul′j U∗

lj Ulk U∗
l′k

)
sin

Δm2
jk

2p
L , l, l′ = e, μ, τ .

(13.17)

Eq. (13.2) and Eq. (13.13) - Eq. (13.14) imply that P (νl → νl′) and
P (ν̄l → ν̄l′) do not depend on the Majorana CP violation phases in the
neutrino mixing matrix U [30]. Thus, the experiments investigating
the νl → νl′ and ν̄l → ν̄l′ oscillations, l, l′ = e, μ, τ , cannot provide
information on the nature - Dirac or Majorana, of massive neutrinos.
The same conclusions hold also when the νl → νl′ and ν̄l → ν̄l′
oscillations take place in matter [44]. In the case of νl ↔ νl′ and
ν̄l ↔ ν̄l′ oscillations in vacuum, only the Dirac phase(s) in U can cause
CP violating effects leading to P (νl → νl′) �= P (ν̄l → ν̄l′), l �= l′.

In the case of 3-neutrino mixing all different Im(Ul′jU
∗
ljUlkU∗

l′k)
coincide up to a sign as a consequence of the unitarity of U . Therefore
one has [45]:

A
(μe)
CP = −A

(τe)
CP = A

(τμ)
CP =

4 JCP

(
sin

Δm2
32

2p
L + sin

Δm2
21

2p
L + sin

Δm2
13

2p
L

)
,(13.18)

where

JCP = Im
(
Uμ3 U∗

e3 Ue2 U∗
μ2

)
, (13.19)
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Figure 13.1: The νe (ν̄e) survival probability P (νe → νe) =
P (ν̄e → ν̄e), Eq. (13.30), as a function of the neutrino energy for
L = 180 km, Δm2 = 7.0 × 10−5 eV2 and sin2 2θ = 0.84 (from
[48]) .

is the “rephasing invariant” associated with the Dirac CP violation
phase in U . It is analogous to the rephasing invariant associated
with the Dirac CP violating phase in the CKM quark mixing matrix
[46]. It is clear from Eq. (13.18) that JCP controls the magnitude of
CP violation effects in neutrino oscillations in the case of 3-neutrino
mixing. If sin(Δm2

ij/(2p))L ∼= 0 for (ij) = (32), or (21), or (13),

we get A
(l′l)
CP

∼= 0. Thus, if as a consequence of the production,
propagation and/or detection of neutrinos, effectively oscillations due
only to one non-zero neutrino mass squared difference take place, the
CP violating effects will be strongly suppressed. In particular, we get
A

(l′l)
CP = 0, unless all three Δm2

ij �= 0, (ij) = (32), (21), (13).
If the number of massive neutrinos n is equal to the number

of neutrino flavours, n = 3, one has as a consequence of the
unitarity of the neutrino mixing matrix:

∑
l′=e,μ,τ P (νl → νl′) = 1,

l = e, μ, τ ,
∑

l=e,μ,τ P (νl → νl′) = 1, l′ = e, μ, τ . Similar “probability
conservation” equations hold for P (ν̄l → ν̄l′). If, however, the number
of light massive neutrinos is bigger than the number of flavour
neutrinos as a consequence, e.g., of a flavour neutrino - sterile neutrino
mixing, we would have

∑
l′=e,μ,τ P (νl → νl′) = 1 − P (νl → ν̄sL),

l = e, μ, τ , where we have assumed the existence of just one
sterile neutrino. Obviously, in this case

∑
l′=e,μ,τ P (νl → νl′) < 1 if

P (νl → ν̄sL) �= 0. The former inequality is used in the searches for
oscillations between active and sterile neutrinos.

Consider next neutrino oscillations in the case of one neutrino mass
squared difference “dominance”: suppose that |Δm2

j1| 	 |Δm2
n1|,

j = 2, ..., (n − 1), |Δm2
n1|L/(2p)�1 and |Δm2

j1|L/(2p) 	 1, so that
exp[i(Δm2

j1 L/(2p)] ∼= 1, j = 2, ..., (n − 1). Under these conditions we
obtain from Eq. (13.13) and Eq. (13.14), keeping only the oscillating
terms involving Δm2

n1:

P (νl(l′) → νl′(l)) ∼= P (ν̄l(l′) → ν̄l′(l)) ∼= δll′ − 2|Uln|2
[
δll′ − |Ul′n|2

]
(
1 − cos

Δm2
n1

2p
L

)
. (13.20)

It follows from the neutrino oscillation data (Sections 13.4 and
13.5) that in the case of 3-neutrino mixing, one of the two independent
neutrino mass squared differences, say Δm2

21, is much smaller in
absolute value than the second one, Δm2

31: |Δm2
21| 	 |Δm2

31|. The
data imply:

|Δm2
21| ∼= 7.6 × 10−5 eV2 ,

|Δm2
31| ∼= 2.4 × 10−3 eV2 ,

|Δm2
21|/|Δm2

31| ∼= 0.032 . (13.21)

Neglecting the effects due to Δm2
21 we get from Eq. (13.20) by

setting n = 3 and choosing, e.g., i) l = l′ = e and ii) l = e(μ), l′ = μ(e)
[47]:

P (νe → νe) = P (ν̄e → ν̄e) ∼= 1−2|Ue3|2
(
1 − |Ue3|2

)(
1 − cos

Δm2
31

2p
L

)
,

(13.22)

P (νμ(e) → νe(μ)) ∼= 2 |Uμ3|2 |Ue3|2
(

1 − cos
Δm2

31

2p
L

)

=
|Uμ3|2

1 − |Ue3|2 P 2ν
(
|Ue3|2, m2

31

)
, (13.23)

and P (ν̄μ(e) → ν̄e(μ)) = P (νμ(e) → νe(μ)). Here P 2ν
(|Ue3|2, m2

31

)
is

the probability of the 2-neutrino transition νe → (s23νμ + c23ντ ) due
to Δm2

31 and a mixing with angle θ13, where

sin2 θ13 = |Ue3|2 , s2
23 ≡ sin2 θ23 =

|Uμ3|2
1 − |Ue3|2 , c223 ≡ cos2 θ23 =

|Uτ3|2
1 − |Ue3|2 .

(13.24)

Table 13.1: Sensitivity of different oscillation experiments.

Source Type of ν E[MeV] L[km] min(Δm2)[eV2]

Reactor νe ∼ 1 1 ∼ 10−3

Reactor νe ∼ 1 100 ∼ 10−5

Accelerator νμ, νμ ∼ 103 1 ∼ 1
Accelerator νμ, νμ ∼ 103 1000 ∼ 10−3

Atmospheric ν’s νμ,e, νμ,e ∼ 103 104 ∼ 10−4

Sun νe ∼ 1 1.5 × 108 ∼ 1011

Eq. (13.22) describes with a relatively high precision the oscillations of
reactor ν̄e on a distance L ∼ 1 km in the case of 3-neutrino mixing. It
was used in the analysis of the results of the CHOOZ experiment and
can be used in the analyses of the data of the Double Chooz, Daya Bay
and RENO experiments, which are under preparation. Eq. (13.20)
with n = 3 and l = l′ = μ describes with a relatively good precision
the effects of oscillations of the accelerator νμ, seen in the K2K and
MINOS experiments. The νμ → ντ oscillations, which the OPERA
experiment is aiming to detect, can be described by Eq. (13.20) with
n = 3 and l = μ, l′ = τ . Finally, the probability Eq. (13.23) describes
with a good precision the νμ → νe and ν̄μ → ν̄e oscillations under the
conditions of the MINOS experiment.

In certain cases the dimensions of the neutrino source, ΔL, are
not negligible in comparison with the oscillation length. Similarly,
when analyzing neutrino oscillation data one has to include the
energy resolution of the detector, ΔE, etc. in the analysis. As can
be shown [29], if 2πΔL/Lv

jk � 1, and/or 2π(L/Lv
jk)(ΔE/E) � 1,

the oscillating terms in the neutrino oscillation probabilities will be
strongly suppressed. In this case (as well as in the case of sufficiently
large separation of the νj and νk wave packets at the detection point)
the interference terms in P (νl → νl′) and P (ν̄l′ → ν̄l) will be negligibly
small and the neutrino flavour conversion will be determined by the
average probabilities:

P̄ (νl → νl′) = P̄ (ν̄l → ν̄l′) ∼=
∑
j

|Ul′j |2 |Ulj |2 . (13.25)

Suppose next that in the case of 3-neutrino mixing, |Δm2
21|L/(2p) ∼

1, while at the same time |Δm2
31(32)|L/(2p) � 1, and the oscillations

due to Δm2
31 and Δm2

32 are strongly suppressed (averaged out) due
to integration over the region of neutrino production, the energy
resolution function, etc. In this case we get for the νe and ν̄e survival
probabilities:

P (νe → νe) = P (ν̄e → ν̄e) ∼= |Ue3|4 +
(
1 − |Ue3|2

)2
P 2ν(νe → νe) ,

(13.26)
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P 2ν(νe → νe) = P 2ν(ν̄e → ν̄e) ≡ P 2ν
ee (θ12, Δm2

21)

= 1 − 1
2

sin2 2θ12

(
1 − cos

Δm2
21

2p
L

)
(13.27)

being the νe and ν̄e survival probability in the case of 2-neutrino
oscillations “driven” by the angle θ12 and Δm2

21, with θ12 determined
by

cos2 θ12 =
|Ue1|2

1 − |Ue3|2 , sin2 θ12 =
|Ue2|2

1 − |Ue3|2 . (13.28)

Eq. (13.26) with P 2ν(ν̄e → ν̄e) given by Eq. (13.27) describes the
effects of neutrino oscillations of reactor ν̄e observed by the KamLAND
experiment.

In the case of 3-neutrino mixing with 0 < Δm2
21 < |Δm2

31(32)| and

|Ue3|2 = | sin θ13|2 	 1 (see Section 13.6), one can identify Δm2
21

and θ12 as the neutrino mass squared difference and mixing angle
responsible for the solar νe oscillations, and Δm2

31 and θ23 as those
associated with the dominant atmospheric νμ and ν̄μ oscillations.
Thus, θ12 and θ23 are often called “solar” and “atmospheric” neutrino
mixing angles and denoted as θ12 = θ� and θ23 = θA (or θatm),
while Δm2

21 and Δm2
31 are often referred to as the “solar” and

“atmospheric” neutrino mass squared differences and denoted as
Δm2

21 ≡ Δm2� and Δm2
31 ≡ Δm2

A(or Δm2
atm).

The data of ν-oscillations experiments is often analyzed assuming
2-neutrino mixing:

|νl〉 = |ν1〉 cos θ + |ν2〉 sin θ , |νx〉 = −|ν1〉 sin θ + |ν2〉 cos θ ,
(13.29)

where θ is the neutrino mixing angle in vacuum and νx is another
flavour neutrino or sterile (anti-) neutrino, x = l′ �= l or νx ≡ ν̄sL. In
this case we have [41]:

P 2ν(νl → νl) = 1 − 1
2

sin2 2θ

(
1 − cos 2π

L

Lv

)
,

P 2ν(νl → νx) = 1 − P 2ν(νl → νl) , (13.30)

where Lv = 4π p/Δm2, Δm2 = m2
2 − m2

1 > 0. Combining the CPT
invariance constraints with the probability conservation one obtains:
P (νl → νx) = P (ν̄l → ν̄x) = P (νx → νl) = P (ν̄x → ν̄l). These
equalities and Eq. (13.30) with l = μ and x = τ were used, for
instance, in the analysis of the Super-K atmospheric neutrino data
[13], in which the first compelling evidence for oscillations of neutrinos
was obtained. The probability P 2ν(νl → νx), Eq. (13.30), depends on
two factors: on (1−cos 2πL/Lv), which exhibits oscillatory dependence
on the distance L and on the neutrino energy p = E (hence the
name “neutrino oscillations”), and on sin2 2θ, which determines the
amplitude of the oscillations. In order to have P 2ν(νl → νx) ∼= 1,
two conditions have to be fulfilled: one should have sin2 2θ ∼= 1 and
Lv � 2πL with cos 2πL/Lv ∼= −1. If Lv � 2πL, the oscillations do not
have enough time to develop on the way to the neutrino detector and
P (νl → νx) ∼= 0. This is illustrated in Fig. 1 showing the dependence
of the probability P 2ν(νe → νe) = P 2ν(ν̄e → ν̄e) on the neutrino
energy.

A given experiment searching for neutrino oscillations is specified,
in particular, by the average energy of the neutrinos being studied, Ē,
and by the source-detector distance L. The requirement Lv

jk � 2πL

determines the minimal value of a generic neutrino mass squared
difference Δm2 > 0, to which the experiment is sensitive (figure
of merit of the experiment): min(Δm2) ∼ 2Ē/L. Because of the
interference nature of neutrino oscillations, experiments can probe,
in general, rather small values of Δm2 (see, e.g., Ref. 37). Values
of min(Δm2), characterizing qualitatively the sensitivity of different
experiments are given in Table 1. They correspond to the reactor
experiments CHOOZ (L ∼ 1 km) and KamLAND (L ∼ 100 km),
to accelerator experiments - past (L ∼ 1 km), recent, current and
future (K2K, MINOS, OPERA, T2K, NOνA), L ∼ (300 ÷ 1000) km),
to the Super-Kamiokande experiment studying atmospheric neutrino
oscillations, and to the solar neutrino experiments.

13.3. Matter effects in neutrino oscillations

The presence of matter can change drastically the pattern
of neutrino oscillations: neutrinos can interact with the particles
forming the matter. Accordingly, the Hamiltonian of the neutrino
system in matter Hm, differs from the Hamiltonian in vacuum H0,
Hm = H0 + Hint, where Hint describes the interaction of neutrinos
with the particles of matter. When, for instance, νe and νμ propagate
in matter, they can scatter (due to Hint) on the electrons (e−), protons
(p) and neutrons (n) present in matter. The incoherent elastic and
the quasi-elastic scattering, in which the states of the initial particles
change in the process (destroying the coherence between the neutrino
states), are not of interest - they have a negligible effect on the solar
neutrino propagation in the Sun and on the solar, atmospheric and
reactor neutrino propagation in the Earth [49]: even in the center
of the Sun, where the matter density is relatively high (∼ 150 g/cm3),
a νe with energy of 1 MeV has a mean free path with respect to the
indicated scattering processes ∼ 1010 km. We recall that the solar
radius is much smaller: R� = 6.96 × 105 km. The oscillating νe and
νμ can scatter also elastically in the forward direction on the e−, p and
n, with the momenta and the spin states of the particles remaining
unchanged. In such a process the coherence of the neutrino states is
preserved.

The νe and νμ coherent elastic scattering on the particles of matter
generates nontrivial indices of refraction of the νe and νμ in matter
[25]: κ(νe) �= 1, κ(νμ) �= 1. Most importantly, we have κ(νe) �= κ(νμ).
The difference κ(νe)−κ(νμ) is determined essentially by the difference
of the real parts of the forward νe − e− and νμ − e− elastic scattering
amplitudes [25] Re [Fνe−e−(0)] − Re [Fνμ−e−(0)]: due to the flavour
symmetry of the neutrino – quark (neutrino – nucleon) neutral current
interaction, the forward νe − p, n and νμ − p, n elastic scattering
amplitudes are equal and therefore do not contribute to the difference
of interest [50]. The imaginary parts of the forward scattering
amplitudes (responsible, in particular, for decoherence effects) are
proportional to the corresponding total scattering cross-sections and
in the case of interest are negligible in comparison with the real parts.
The real parts of the amplitudes Fνe−e−(0) and Fνμ−e−(0) can be
calculated in the Standard Model. To leading order in the Fermi
constant GF , only the term in Fνe−e−(0) due to the diagram with
exchange of a virtual W±-boson contributes to Fνe−e−(0)−Fνμ−e−(0).
One finds the following result for κ(νe) − κ(νμ) in the rest frame of
the scatters [25,52,53]:

κ(νe) − κ(νμ) =
2π

p2

(
Re [Fνe−e−(0)] − Re [Fνμ−e−(0)]

)

= − 1
p

√
2GF Ne , (13.31)

where Ne is the electron number density in matter. Given κ(νe) −
κ(νμ), the system of evolution equations describing the νe ↔ νμ

oscillations in matter reads [25]:

i
d

dt

(
Ae(t, t0)
Aμ(t, t0)

)
=

(−ε(t) ε′
ε′ ε(t)

) (
Ae(t, t0)
Aμ(t, t0)

)
(13.32)

where Ae(t, t0) (Aμ(t, t0)) is the amplitude of the probability to find
νe (νμ) at time t of the evolution of the system if at time t0 ≤ t the
neutrino νe or νμ has been produced and

ε(t) =
1
2

[
Δm2

2E
cos 2θ −

√
2GF Ne(t)], ε′ =

Δm2

4E
sin 2θ. (13.33)

The term
√

2GF Ne(t) in ε(t) accounts for the effects of matter on
neutrino oscillations. The system of evolution equations describing
the oscillations of antineutrinos ν̄e ↔ ν̄μ in matter has exactly the
same form except for the matter term in ε(t) which changes sign. The
effect of matter in neutrino oscillations is usually called the Mikheyev,
Smirnov, Wolfenstein (or MSW) effect.

Consider first the case of νe ↔ νμ oscillations in matter with
constant density: Ne(t) = Ne = const. Due to the interaction term
Hint in Hm, the eigenstates of the Hamiltonian of the neutrino system
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in vacuum, |ν1,2〉 are not eigenstates of Hm. For the eigenstates |νm
1,2〉

of Hm, which diagonalize the evolution matrix in the r.h.s. of the
system Eq. (13.32) we have:

|νe〉 = |νm
1 〉 cos θm+|νm

2 〉 sin θm , |νμ〉 = −|νm
1 〉 sin θm +|νm

2 〉 cos θm .
(13.34)

Here θm is the neutrino mixing angle in matter [25],

sin 2θm =
tan 2θ√

(1 − Ne
Nres

e
)2 + tan2 2θ

, cos 2θm =
1 − Ne/N

res
e√

(1 − Ne
Nres

e
)2 + tan2 2θ

,

(13.35)
where the quantity

Nres
e =

Δm2 cos 2θ

2E
√

2GF

∼= 6.56 × 106 Δm2[eV2]
E[MeV]

cos 2θ cm−3 NA ,

(13.36)
is called (for Δm2 cos 2θ > 0) “resonance density” [26,52], NA being
Avogadro’s number. The “adiabatic” states |νm

1,2〉 have energies Em
1,2

whose difference is given by

Em
2 − Em

1 =
Δm2

2E

(
(1 − Ne

Nres
e

)2 cos2 2θ + sin2 2θ

)1
2 ≡ ΔM2

2E
.

(13.37)
The probability of νe → νμ transition in matter with Ne = const. has
the form [52]

P 2ν
m (νe → νμ) = |Aμ(t)|2 =

1
2

sin2 2θm [1 − cos 2π
L

Lm
]

Lm = 2π/(Em
2 − Em

1 ) , (13.38)

where Lm is the oscillation length in matter. As Eq. (13.35) indicates,
the dependence of sin2 2θm on Ne has a resonance character [26].
Indeed, if Δm2 cos 2θ > 0, for any sin2 2θ �= 0 there exists a value of
Ne given by Nres

e , such that when Ne = Nres
e we have sin2 2θm = 1

independently of the value of sin2 2θ < 1. This implies that the
presence of matter can lead to a strong enhancement of the oscillation
probability P 2ν

m (νe → νμ) even when the νe ↔ νμ oscillations in
vacuum are suppressed due to a small value of sin2 2θ. For obvious
reasons

Ne = Nres
e ≡ Δm2 cos 2θ

2E
√

2GF
, (13.39)

is called the “resonance condition” [26,52], while the energy at which
Eq. (13.39) holds for given Ne and Δm2 cos 2θ, is referred to as the
“resonance energy”, Eres. The oscillation length at resonance is given
by [26] Lres

m = Lv/ sin 2θ, while the width in Ne of the resonance at
half height reads ΔNres

e = 2Nres
e tan 2θ. Thus, if the mixing angle

in vacuum is small, the resonance is narrow, ΔNres
e 	 Nres

e , and
Lres

m � Lv. The energy difference Em
2 − Em

1 has a minimum at the
resonance: (Em

2 − Em
1 )res = min (Em

2 − Em
1 ) = (Δm2/(2E)) sin 2θ.

It is instructive to consider two limiting cases. If Ne 	 Nres
e ,

we have from Eq. (13.35) and Eq. (13.37), θm
∼= θ, Lm

∼= Lv

and neutrinos oscillate practically as in vacuum. In the limit
Ne � Nres

e , Nres
e tan2 2θ, one finds θm

∼= π/2 ( cos 2θm
∼= −1) and

the presence of matter suppresses the νe ↔ νμ oscillations. In this
case |νe〉 ∼= |νm

2 〉, |νμ〉 = −|νm
1 〉, i.e., νe practically coincides with the

heavier matter-eigenstate, while νμ coincides with the lighter one.
Since the neutral current weak interaction of neutrinos in the

Standard Model is flavour symmetric, the formulae and results we
have obtained are valid for the case of νe − ντ mixing and νe ↔ ντ

oscillations in matter as well. The case of νμ − ντ mixing, however, is
different: to a relatively good precision we have [54] κ(νμ) ∼= κ(ντ )
and the νμ ↔ ντ oscillations in the matter of the Earth and the Sun
proceed practically as in vacuum [55].

The analogs of Eq. (13.35) to Eq. (13.38) for oscillations of
antineutrinos, ν̄e ↔ ν̄μ, in matter can formally be obtained by
replacing Ne with (−Ne) in the indicated equations. It should be
clear that depending on the sign of Δm2 cos 2θ, the presence of matter
can lead to resonance enhancement either of the νe ↔ νμ or of the
ν̄e ↔ ν̄μ oscillations, but not of both types of oscillations [52].
For Δm2 cos 2θ < 0, for instance, the matter can only suppress the

νe → νμ oscillations, while it can enhance the ν̄e → ν̄μ transitions.
This disparity between the behavior of neutrinos and that of
antineutrinos is a consequence of the fact that the matter in the
Sun or in the Earth we are interested in is not charge-symmetric (it
contains e−, p and n, but does not contain their antiparticles) and
therefore the oscillations in matter are neither CP- nor CPT- invariant
[44]. Thus, even in the case of 2-neutrino mixing and oscillations we
have, e.g., P 2ν

m (νe → νμ(τ)) �= P 2ν
m (ν̄e → ν̄μ(τ)).

The matter effects in the νe ↔ νμ(τ) (ν̄e ↔ ν̄μ(τ)) oscillations will
be invariant with respect to the operation of time reversal if the Ne

distribution along the neutrino path is symmetric with respect to
this operation [45,56]. The latter condition is fulfilled (to a good
approximation) for the Ne distribution along a path of a neutrino
crossing the Earth [57].

13.3.1. Effects of Earth matter on oscillations of neutrinos :
The formalism we have developed can be applied, e.g., to the study

of matter effects in the νe ↔ νμ(τ) (νμ(τ) ↔ νe) and ν̄e ↔ ν̄μ(τ)

(ν̄μ(τ) ↔ ν̄e) oscillations of neutrinos which traverse the Earth [58].
Indeed, the Earth density distribution in the existing Earth models
[57] is assumed to be spherically symmetric and there are two major
density structures - the core and the mantle, and a certain number
of substructures (shells or layers). The Earth radius is R⊕ = 6371
km; the Earth core has a radius of Rc = 3486 km, so the Earth
mantle depth is 2885 km. For a spherically symmetric Earth density
distribution, the neutrino trajectory in the Earth is specified by the
value of the Nadir angle θn of the trajectory. For θn ≤ 33.17o, or
path lengths L ≥ 10660 km, neutrinos cross the Earth core. The path
length for neutrinos which cross only the Earth mantle is given by
L = 2R⊕ cos θn. If neutrinos cross the Earth core, the lengths of the
paths in the mantle, 2Lman, and in the core, Lcore, are determined by:
Lman = R⊕ cos θn − (R2

c −R2⊕ sin2 θn)
1
2 , Lcore = 2(R2

c −R2⊕ sin2 θn)
1
2 .

The mean electron number densities in the mantle and in the core
according to the PREM model read [57]: N̄man

e
∼= 2.2 cm−3 NA,

N̄ c
e
∼= 5.4 cm−3 NA. Thus, we have N̄ c

e
∼= 2.5 N̄man

e . The change
of Ne from the mantle to the core can well be approximated by
a step function [57]. The electron number density Ne changes
relatively little around the indicated mean values along the trajectories
of neutrinos which cross a substantial part of the Earth mantle,
or the mantle and the core, and the two-layer constant density
approximation, Nman

e = const. = Ñman
e , N c

e = const. = Ñ c
e , Ñman

e
and Ñ c

e being the mean densities along the given neutrino path in
the Earth, was shown to be sufficiently accurate in what concerns
the calculation of neutrino oscillation probabilities [45,60,63] (and
references quoted in [60,63]) in a large number of specific cases. This
is related to the fact that the relatively small changes of density along
the path of the neutrinos in the mantle (or in the core) take place
over path lengths which are typically considerably smaller than the
corresponding oscillation length in matter.

In the case of 3-neutrino mixing and for neutrino energies of E � 2
GeV, the effects due to Δm2

21 (|Δm2
21| 	 |Δm2

31|, see Eq. (13.21))
in the neutrino oscillation probabilities are sub-dominant and to
leading order can be neglected: the corresponding resonance density
|Nres

e21 |� 0.25 cm−3 NA 	 N̄man,c
e and the Earth matter strongly

suppresses the oscillations due to Δm2
21. For oscillations in vacuum

this approximation is valid as long as the leading order contribution
due to Δm2

31 in the relevant probabilities is bigger than approximately
10−3. In this case the 3-neutrino νe → νμ(τ) (ν̄e → ν̄μ(τ)) and
νμ(τ) → νe (ν̄μ(τ) → ν̄e) transition probabilities for neutrinos
traversing the Earth, reduce effectively to a 2-neutrino transition
probability (see, e.g., [61–63]) , with Δm2

31 and θ13 playing the role of
the relevant 2-neutrino vacuum oscillation parameters. The 3-neutrino
oscillation probabilities of the atmospheric and accelerator νe,μ having
energy E and crossing the Earth along a trajectory characterized by a
Nadir angle θn, for instance, have the following form:

P 3ν
m (νe → νe) ∼= 1 − P 2ν

m , (13.40)

P 3ν
m (νe → νμ) ∼= P 3ν

m (νμ → νe) ∼= s2
23 P 2ν

m , P 3ν
m (νe → ντ ) ∼= c223 P 2ν

m ,
(13.41)

P 3ν
m (νμ → νμ) ∼= 1−s4

23 P 2ν
m −2c223s

2
23

[
1 − Re (e−iκA2ν

m (ν′ → ν′))
]
,

(13.42)
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P 3ν
m (νμ → ντ ) = 1 − P 3ν

m (νμ → νμ) − P 3ν
m (νμ → νe). (13.43)

Here P 2ν
m ≡ P 2ν

m (Δm2
31, θ13; E, θn) is the probability of the 2-neutrino

νe → ν′ ≡ (s23νμ + c23ντ ) oscillations in the Earth, and κ and
A2ν

m (ν′ → ν′) ≡ A2ν
m are known phase and 2-neutrino transition

probability amplitude (see, e.g., [62,63]). We note that Eq. (13.40)
to Eq. (13.42) are based only on the assumption that |Nres

e21 | is much
smaller than the densities in the Earth mantle and core and does
not rely on the constant density approximation. Similar results are
valid for the corresponding antineutrino oscillation probabilities: one
has just to replace P 2ν

m , κ and A2ν
m in the expressions given above

with the corresponding quantities for antineutrinos (the latter are
obtained from those for neutrinos by changing the sign in front of Ne).
Obviously, we have: P (νe(μ) → νμ(e)), P (ν̄e(μ) → ν̄μ(e)) ≤ sin2 θ23,
and P (νe → ντ ), P (ν̄e → ν̄τ ) ≤ cos2 θ23. The one Δm2 dominance
approximation and correspondingly Eq. (13.40) to Eq. (13.43) were
used by the Super-Kamiokande Collaboration in their latest neutrino
oscillation analysis of the multi-GeV atmospheric neutrino data [64].

In the case of neutrinos crossing only the Earth mantle and in
the constant density approximation, P 2ν

m is given by the r.h.s. of
Eq. (13.38) with θ and Δm2 replaced by θ13 and Δm2

31, while for κ
and A2ν

m we have (see, e.g., Ref. 63):

κ ∼= 1
2
[
Δm2

31

2E
L +

√
2GF N̄man

e L − ΔM2L

2E
],

A2ν
m = 1 +

(
e−iΔM2L

2E − 1
)

cos2 θ′m , (13.44)

where ΔM2 is defined in Eq. (13.37) (with θ = θ13 and Δm2 = Δm2
31),

θ′m is the mixing angle in the mantle which coincides in vacuum with
θ13 (Eq. (13.35) with Ne = N̄man

e and θ = θ13), and L = 2R⊕ cos θn

is the distance the neutrino travels in the mantle.
It follows from Eq. (13.40) and Eq. (13.41) that for Δm2

31 cos 2θ13 >
0, the oscillation effects of interest, e.g., in the νe(μ) → νμ(e) and
νe → ντ transitions will be maximal if P 2ν

m
∼= 1, i.e., if Eq. (13.39)

leading to sin2 2θm
∼= 1 is fulfilled, and ii) cos(ΔM2L/(2E)) ∼= −1.

Given the value of N̄man
e , the first condition determines the neutrino’s

energy, while the second determines the path length L, for which one
can have P 2ν

m
∼= 1. For Δm2

31
∼= 2.4 × 10−3 eV2, sin2 θ13 < 0.056

(99.73% C.L.) following from the data (see Sections 13.6 and
13.7) and N̄man

e
∼= 2.2 NAcm−3, one finds that Eres

∼= 7.2 GeV
and L ∼= 2370/ sin2θ13 km ∼= 7600 (5200) km, where we used
sin2 θ13 = 0.025 (0.056) in the last equality. Thus, for Δm2

31 > 0, the
Earth matter effects can amplify P 2ν

m , and therefore P (νe(μ) → νμ(e))
and P (νe → ντ ), significantly when the neutrinos cross only the
mantle for E ∼ 7 GeV and L � 5200 km, or cos θn � 0.35. If
Δm2

31 < 0 the same considerations apply for the corresponding
antineutrino oscillation probabilities P̄ 2ν

m = P̄ 2ν
m (ν̄e → (s23ν̄μ + c23ν̄τ ))

and correspondingly for P (ν̄e(μ) → ν̄μ(e)) and P (ν̄e → ν̄τ ). For
Δm2

31 > 0, the ν̄e(μ) → ν̄μ(e) and ν̄e → ν̄τ oscillations are suppressed
by the Earth matter, while if Δm2

31 < 0, the same conclusion holds
for the νe(μ) → νμ(e) and νe → ντ , oscillations.

In the case of neutrinos crossing the Earth core, new resonance-like
effects become possible in the νμ → νe and νe → νμ(τ) (or ν̄μ → ν̄e

and ν̄e → ν̄μ(τ)) transitions [60,62,63,65–67]. For sin2 θ13 < 0.05 and
Δm2

31 > 0, we can have [66] P 2ν
m (Δm2

31, θ13) ∼= 1, and correspondingly
maximal P 3ν

m (νe → νμ) = P 3ν
m (νμ → νe) ∼= s2

23, only due to the effect
of maximal constructive interference between the amplitudes of the
νe → ν′ transitions in the Earth mantle and in the Earth core.
The effect differs from the MSW one and the enhancement happens
in the case of interest at a value of the energy between the MSW
resonance energies corresponding to the density in the mantle and
that of the core, or at a value of the resonance density Nres

e which
lies between the values of Ne in the mantle and in the core [60].
In [60,63] the enhancement was called “neutrino oscillation length
resonance”, while in [62,65] the term “parametric resonance” for the
same effect was used [68]. The mantle-core enhancement effect is
caused by the existence (for a given neutrino trajectory through the
Earth core) of points of resonance-like maximal neutrino conversion,
P 2ν

m (Δm2
31, θ13) = 1, in the corresponding space of neutrino oscillation

parameters [66]. For Δm2
31 < 0 the mantle-core enhancement can

take place for the antineutrino transitions, ν̄μ → ν̄e and ν̄e → ν̄μ(τ).

A rather complete set of values of Δm2
31/E > 0 and sin2 2θ13 for

which P 2ν
m (Δm2

31, θ13) = 1 was found in [66]. The location of these
points in the Δm2

31/E − sin2 2θ13 plane determines the regions where
P 2ν

m (Δm2
31, θ13) is large, P 2ν

m (Δm2, θ)� 0.5. These regions vary slowly
with the Nadir angle, being remarkably wide in the Nadir angle and
rather wide in the neutrino energy [66], so that the transitions of
interest can produce noticeable effects in the measured observables.
For sin2 θ13 < 0.05, there are two sets of values of (Δm2

31/E, sin2 θ13)
for which P 2ν

m (Δm2
31, θ13) = 1. For Δm2

31 = 2.4 × 10−3 eV2 and
Nadir angles, e.g., θn=0; 130; 230, we have P 2ν

m (Δm2
31, θ13) = 1

at the following points in the E − sin2 θ13 plane: 1) sin2 2θ13 =
0.034; 0.039; 0.051, E ∼= 3.3; 3.4; 3.7 GeV; and 2) sin2 2θ13 =
0.15; 0.17; 0.22, E ∼= 5.0; 5.3; 6.3 GeV (see Table 2 in the last article
in Ref. 66; see also the last article in Ref. 67). The values of sin2 2θ13

at which the 2nd solution takes place are marginally allowed by the
data.

The mantle-core enhancement of P 2ν
m (or P̄ 2ν

m ) is relevant, in
particular, for the searches of sub-dominant νe(μ) → νμ(e) (or
ν̄e(μ) → ν̄μ(e)) oscillations of atmospheric neutrinos having energies
E � 2 GeV and crossing the Earth core on the way to the detector
(see Ref. 60 to Ref. 67 and the references quoted therein). The effects
of Earth matter on the oscillations of atmospheric and accelerator
neutrinos have not been observed so far. At present there are no
compelling evidences for oscillations of the atmospheric νe and/or ν̄e.

The expression for the probability of the νe → νμ oscillations
taking place in the Earth mantle in the case of 3-neutrino mixing,
in which both neutrino mass squared differences Δm2

21 and Δm2
31

contribute and the CP violation effects due to the Dirac phase in
the neutrino mixing matrix are taken into account, has the following
form in the constant density approximation and keeping terms up to
second order in the two small parameters |α| ≡ |Δm2

21|/|Δm2
31| 	 1

and sin2 θ13 	 1 [69]:

P 3ν man
m (νe → νμ) ∼= P0 + Psin δ + Pcos δ + P3 . (13.45)

Here

P0 = sin2 θ23
sin2 2θ13

(A − 1)2
sin2[(A − 1)Δ]

P3 = α2 cos2 θ23
sin2 2θ12

A2
sin2(AΔ) , (13.46)

Psin δ = α
8 JCP

A(1 − A)
(sin Δ) (sin AΔ) (sin[(1 − A)Δ]) , (13.47)

Pcos δ = α
8 JCP cot δ

A(1 − A)
(cosΔ) (sin AΔ) (sin[(1 − A)Δ]) , (13.48)

where

α =
Δm2

21

Δm2
31

, Δ =
Δm2

31 L

4E
, A =

√
2GFNman

e
2E

Δm2
31

, (13.49)

and cot δ = J−1
CP Re(Uμ3U

∗
e3Ue2U

∗
μ2), JCP = Im(Uμ3U

∗
e3Ue2U

∗
μ2).

The analytic expression for P 3ν man
m (νe → νμ) given above is

valid for [69] neutrino path lengths in the mantle (L ≤ 10660 km)
satisfying L � 10560 km E[GeV] (7.6×10−5 eV2/Δm2

21), and energies
E � 0.34 GeV(Δm2

21/7.6 × 10−5 eV2) (1.4 cm−3NA/Nman
e ). The

expression for the ν̄e → ν̄μ oscillation probability can be obtained
formally from that for P 3ν man

m (νe → νμ) by making the changes
A → −A and JCP → −JCP , with JCP cot δ ≡ Re(Uμ3U

∗
e3Ue2U

∗
μ2)

remaining unchanged. The term Psin δ in P 3ν man
m (νe → νμ) would

be equal to zero if the Dirac phase in the neutrino mixing matrix
U possesses a CP-conserving value. Even in this case, however, we
have A

(μe) man
CP ≡ (P 3ν man

m (νe → νμ) − P 3ν man
m (ν̄e → ν̄μ)) �= 0

due to the effects of the Earth matter. It will be important to
experimentally disentangle the effects of the Earth matter and of JCP

in A
(μe) man
CP : this will allow to get information about the Dirac CP

violation phase in U . In the vacuum limit of Nman
e = 0 (A = 0) we

have A
(μe) man
CP = A

(μe)
CP (see Eq. (13.18)) and only the term Psin δ

contributes to the asymmetry A
(μe)
CP .
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13.3.2. Oscillations of solar neutrinos :
Consider next the oscillations of solar νe while they prop-

agate from the central part of the Sun, where they are pro-
duced, to the surface of the Sun [26,59] (see also, e.g.,
[70]). Details concerning the production, spectrum, magnitude and
particularities of the solar neutrino flux, the methods of detection
of solar neutrinos, description of solar neutrino experiments and of
the data they provided will be discussed in the next section (see also
Ref. 71). The electron number density Ne changes considerably along
the neutrino path in the Sun: it decreases monotonically from the
value of ∼ 100 cm−3 NA in the center of the Sun to 0 at the surface
of the Sun. According to the contemporary solar models (see, e.g.,
[71,72]) , Ne decreases approximately exponentially in the radial
direction towards the surface of the Sun:

Ne(t) = Ne(t0) exp
{
− t − t0

r0

}
, (13.50)

where (t − t0) ∼= d is the distance traveled by the neutrino in the Sun,
Ne(t0) is the electron number density at the point of νe production
in the Sun, r0 is the scale-height of the change of Ne(t) and one has
[71,72] r0 ∼ 0.1R�.

Consider the case of 2-neutrino mixing, Eq. (13.34). Obviously,
if Ne changes with t (or equivalently with the distance) along
the neutrino trajectory, the matter-eigenstates, their energies, the
mixing angle and the oscillation length in matter, become, through
their dependence on Ne, also functions of t: |νm

1,2〉 = |νm
1,2(t)〉,

Em
1,2 = Em

1,2(t), θm = θm(t) and Lm = Lm(t). It is not difficult to
understand qualitatively the possible behavior of the neutrino system
when solar neutrinos propagate from the center to the surface of the
Sun if one realizes that one is dealing effectively with a two-level
system whose Hamiltonian depends on time and admits “jumps”
from one level to the other (see Eq. (13.32)). Consider the case of
Δm2 cos 2θ > 0. Let us assume first for simplicity that the electron
number density at the point of a solar νe production in the Sun is
much bigger than the resonance density, Ne(t0) � Nres

e . Actually,
this is one of the cases relevant to the solar neutrinos. In this case we
have θm(t0) ∼= π/2 and the state of the electron neutrino in the initial
moment of the evolution of the system practically coincides with the
heavier of the two matter-eigenstates:

|νe〉 ∼= |νm
2 (t0)〉 . (13.51)

Thus, at t0 the neutrino system is in a state corresponding to the
“level” with energy Em

2 (t0). When neutrinos propagate to the surface
of the Sun they cross a layer of matter in which Ne = Nres

e : in
this layer the difference between the energies of the two “levels”
(Em

2 (t) − Em
1 (t)) has a minimal value on the neutrino trajectory

(Eq. (13.37) and Eq. (13.39)). Correspondingly, the evolution of the
neutrino system can proceed basically in two ways. First, the system
can stay on the “level” with energy Em

2 (t), i.e., can continue to be
in the state |νm

2 (t)〉 up to the final moment ts, when the neutrino
reaches the surface of the Sun. At the surface of the Sun Ne(ts) = 0
and therefore θm(ts) = θ, |νm

1,2(ts)〉 ≡ |ν1,2〉 and Em
1,2(ts) = E1,2.

Thus, in this case the state describing the neutrino system at t0 will
evolve continuously into the state |ν2〉 at the surface of the Sun. Using
Eq. (13.29) with l = e and x = μ, it is easy to obtain the probabilities
to find νe and νμ at the surface of the Sun:

P (νe → νe; ts, t0) ∼= |〈νe|ν2〉|2 = sin2 θ

P (νe → νμ; ts, t0) ∼= |〈νμ|ν2〉|2 = cos2 θ . (13.52)

It is clear that under the assumption made and if sin2 θ 	 1,
practically a total νe → νμ conversion is possible. This type of
evolution of the neutrino system and the νe → νμ transitions taking
place during the evolution, are called [26] “adiabatic.” They
are characterized by the fact that the probability of the “jump”
from the upper “level” (having energy Em

2 (t)) to the lower “level”
(with energy Em

1 (t)), P ′, or equivalently the probability of the
νm
2 (t0) → νm

1 (ts) transition, P ′ ≡ P ′(νm
2 (t0) → νm

1 (ts)), on the whole
neutrino trajectory is negligible:

P ′ ≡ P ′(νm
2 (t0) → νm

1 (ts)) ∼= 0 : adiabatic transitions . (13.53)

The second possibility is realized if in the resonance region, where
the two “levels” approach each other closest the system “jumps” from
the upper “level” to the lower “level” and after that continues to be
in the state |νm

1 (t)〉 until the neutrino reaches the surface of the Sun.
Evidently, now we have P ′ ≡ P ′(νm

2 (t0) → νm
1 (ts)) ∼ 1. In this case

the neutrino system ends up in the state |νm
1 (ts)〉 ≡ |ν1〉 at the surface

of the Sun and

P (νe → νe; ts, t0) ∼= |〈νe|ν1〉|2 = cos2 θ

P (νe → νμ; ts, t0) ∼= |〈νμ|ν1〉|2 = sin2 θ . (13.54)

Obviously, if sin2 θ 	 1, practically no transitions of the solar νe into
νμ will occur. The considered regime of evolution of the neutrino
system and the corresponding νe → νμ transitions are usually referred
to as “extremely nonadiabatic.”

Clearly, the value of the “jump” probability P ′ plays a crucial role
in the the νe → νμ transitions: it fixes the type of the transition
and determines to a large extent the νe → νμ transition probability
[59,73,74]. We have considered above two limiting cases. Obviously,
there exists a whole spectrum of possibilities since P ′ can have any
value from 0 to cos2 θ [75,76]. In general, the transitions are called
“nonadiabatic” if P ′ is non-negligible.

Numerical studies have shown [26] that solar neutrinos can undergo
both adiabatic and nonadiabatic νe → νμ transitions in the Sun and
the matter effects can be substantial in the solar neutrino oscillations
for 10−8 eV2 �Δm2 � 10−4 eV2, 10−4 � sin2 2θ < 1.0.

The condition of adiabaticity of the solar νe transitions in Sun can
be written as [59,73]

γ(t) ≡
√

2GF
(Nres

e )2

|Ṅe(t)|
tan2 2θ

(
1 + tan−2 2θm(t)

) 3
2 � 1

adiabatic transitions , (13.55)

while if γ(t)� 1 the transitions are nonadiabatic (see also Ref. 76),
where Ṅe(t) ≡ d

dtNe(t). Condition in Eq. (13.55) implies that the
νe → νμ(τ) transitions in the Sun will be adiabatic if Ne(t) changes
sufficiently slowly along the neutrino path. In order for the transitions
to be adiabatic, condition in Eq. (13.55) has to be fulfilled at any
point of the neutrino’s path in the Sun.

Actually, the system of evolution equations Eq. (13.32) can be
solved exactly for Ne changing exponentially, Eq. (13.50), along the
neutrino path in the Sun [75,77]. More specifically, the system in
Eq. (13.32) is equivalent to one second order differential equation
(with appropriate initial conditions). The latter can be shown [78]
to coincide in form, in the case of Ne given by Eq. (13.50), with
the Schroedinger equation for the radial part of the nonrelativistic
wave function of the Hydrogen atom [79]. On the basis of the exact
solution, which is expressed in terms of confluent hypergeometric
functions, it was possible to derive a complete, simple and very
accurate analytic description of the matter-enhanced transitions of
solar neutrinos in the Sun for any values of Δm2 and θ [75,76,80,81]
(see also [26,59,74,82,83]) .

The probability that a νe, produced at time t0 in the central part
of the Sun, will not transform into νμ(τ) on its way to the surface of
the Sun (reached at time ts) is given by

P 2ν� (νe → νe; ts, t0) = P̄ 2ν� (νe → νe; ts, t0) + Oscillating terms.
(13.56)

Here

P̄ 2ν� (νe → νe; ts, t0) ≡ P̄� =
1
2

+
(

1
2
− P

′
)

cos 2θm(t0) cos 2θ ,

(13.57)
is the average survival probability for νe having energy E ∼= p [74],
where

P
′
=

exp
[
−2πr0 Δm2

2E sin2 θ
]
− exp

[
−2πr0 Δm2

2E

]

1 − exp
[
−2πr0 Δm2

2E

] , (13.58)
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is [75] the “jump” probability for exponentially varying Ne, and
θm(t0) is the mixing angle in matter at the point of νe production [82].
The expression for P̄ 2ν� (νe → νe; ts, t0) with P ′ given by Eq. (13.58)
is valid for Δm2 > 0, but for both signs of cos 2θ �= 0 [75,83]; it is
valid for any given value of the distance along the neutrino trajectory
and does not take into account the finite dimensions of the region of
νe production in the Sun. This can be done by integrating over the
different neutrino paths, i.e., over the region of νe production.

The oscillating terms in the probability P 2ν� (νe → νe; ts, t0) [80,78]
were shown [81] to be strongly suppressed for Δm2 � 10−7 eV2

by the various averagings one has to perform when analyzing the
solar neutrino data. The current solar neutrino and KamLAND
data suggest that Δm2 ∼= 7.6 × 10−5 eV2. For Δm2 � 10−7 eV2,
the averaging over the region of neutrino production in the Sun
etc. renders negligible all interference terms which appear in the
probability of νe survival due to the νe ↔ νμ(τ) oscillations in vacuum
taking place on the way of the neutrinos from the surface of the Sun
to the surface of the Earth. Thus, the probability that νe will remain
νe while it travels from the central part of the Sun to the surface of
the Earth is effectively equal to the probability of survival of the νe

while it propagates from the central part to the surface of the Sun and
is given by the average probability P̄�(νe → νe; ts, t0) (determined by
Eq. (13.57) and Eq. (13.58)).

If the solar νe transitions are adiabatic (P ′ ∼= 0) and cos 2θm(t0) ∼=
−1 (i.e., Ne(t0)/|Nres

e | � 1, | tan 2θ|, the νe are born “above” (in Ne)
the resonance region), one has [26]

P̄ 2ν(νe → νe; ts, t0) ∼= 1
2
− 1

2
cos 2θ. (13.59)

The regime under discussion is realised for sin2 2θ ∼= 0.8 (suggested
by the data, Section 13.4), if E/Δm2 lies approximately in the range
(2 × 104 − 3 × 107) MeV/eV2 (see Ref. 76). This result is relevant for
the interpretation of the Super-Kamiokande and SNO solar neutrino
data. We see that depending on the sign of cos 2θ �= 0, P̄ 2ν(νe → νe)
is either bigger or smaller than 1/2. It follows from the solar neutrino
data that in the range of validity (in E/Δm2) of Eq. (13.59) we have
P̄ 2ν(νe → νe) ∼= 0.3. Thus, the possibility of cos 2θ ≤ 0 is ruled out by
the data. Given the choice Δm2 > 0 we made, the data imply that
Δm2 cos 2θ > 0.

If E/Δm2 is sufficiently small so that Ne(t0)/|Nres
e | 	 1, we have

P ′ ∼= 0, θm(t0) ∼= θ and the oscillations take place in the Sun as in
vacuum [26]:

P̄ 2ν(νe → νe; ts, t0) ∼= 1 − 1
2

sin2 2θ , (13.60)

which is the average two-neutrino vacuum oscillation probability. This
expression describes with good precision the transitions of the solar pp
neutrinos (Section 13.4). The extremely nonadiabatic νe transitions in
the Sun, characterised by γ(t) 	 1, are also described by the average
vacuum oscillation probability (Eq. (13.60)) (for Δm2 cos 2θ > 0 in this
case we have (see e.g., [75,76]) cos 2θm(t0) ∼= −1 and P ′ ∼= cos2 θ).

The probability of νe survival in the case 3-neutrino mixing takes
a simple form for |Δm2

31| ∼= 2.4 × 10−3 eV2 � |Δm2
21|. Indeed, for

the energies of solar neutrinos E � 10 MeV, Nres corresponding to
|Δm2

31| satisfies Nres
e31 � 103 cm−3 NA and is by a factor of 10 bigger

than Ne in the center of the Sun. As a consequence, the oscillations
due to Δm2

31 proceed as in vacuum. The oscillation length associated
with |Δm2

31| satisfies Lv
31 � 10 km 	 ΔR, ΔR being the dimension

of the region of νe production in the Sun. We have for the different
components of the solar νe flux [71] ΔR ∼= (0.04−0.20)R�. Therefore
the averaging over ΔR strongly suppresses the oscillations due to
Δm2

31 and we get [61,84]:

P 3ν� ∼= sin4 θ13 + cos4 θ13 P 2ν� (Δm2
21, θ12; Ne cos2 θ13) , (13.61)

where P 2ν� (Δm2
21, θ12; Ne cos2 θ13) is given by Eq. (13.56) to

Eq. (13.58) in which Δm2 = Δm2
21, θ = θ12 and the solar e−

number density Ne is replaced by Ne cos2 θ13. Thus, the solar νe

transitions observed by the Super-Kamiokande and SNO experiments
are described approximately by:

P 3ν� ∼= sin4 θ13 + cos4 θ13 sin2 θ12 . (13.62)

The data show that P 3ν� ∼= 0.3, which is a strong evidence for matter
effects in the solar νe transitions [85] since in the case of oscillations
in vacuum P 3ν� ∼= sin4 θ13 + (1 − 0.5 sin2 2θ12) cos4 θ13 � 0.48, where
we used sin2 θ13 < 0.056 and sin2 2θ12 � 0.93.

13.4. Measurements of Δm2
� and θ�

13.4.1. Solar neutrino observations :
Observation of solar neutrinos directly addresses the theory of

stellar structure and evolution, which is the basis of the standard solar
model (SSM). The Sun as a well-defined neutrino source also provides
extremely important opportunities to investigate nontrivial neutrino
properties such as nonzero mass and mixing, because of the wide range
of matter density and the great distance from the Sun to the Earth.

The solar neutrinos are produced by some of the fusion reactions in
the pp chain or CNO cycle. The combined effect of these reactions is
written as

4p → 4He + 2e+ + 2νe. (13.63)

Figure 13.2: The solar neutrino spectrum predicted by the
BS05(OP) standard solar model [86]. The neutrino fluxes
are given in units of cm−2s−1MeV−1 for continuous spectra
and cm−2s−1 for line spectra. The numbers associated with
the neutrino sources show theoretical errors of the fluxes.
This figure is taken from the late John Bahcall’s web site,
http://www.sns.ias.edu/~jnb/.

Positrons annihilate with electrons. Therefore, when considering the
solar thermal energy generation, a relevant expression is

4p + 2e− → 4He + 2νe + 26.73 MeV − Eν , (13.64)

where Eν represents the energy taken away by neutrinos, with
an average value being 〈Eν〉 ∼ 0.6 MeV. There have been efforts
to calculate solar neutrino fluxes from these reactions on the
basis of SSM. A variety of input information is needed in the
evolutionary calculations. The most elaborate SSM calculations have
been developed by Bahcall and his collaborators, who define their SSM
as the solar model which is constructed with the best available physics
and input data. Therefore, their SSM calculations have been rather
frequently updated. SSM’s labelled as BS05(OP) [86], BSB06(GS)
and BSB06(AGS) [72], and BPS08(GS) and BPS08(AGS) [87]
represent recent model calculations. (Bahcall passed away in 2005,
but his program to improve SSM is still pursued by his collaborators.)
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Here, “OP” means that newly calculated radiative opacities from the
“Opacity Project” are used. The later models are also calculated with
OP opacities. “GS” and “AGS” refer to old and new determinations of
solar abundances of heavy elements. There are significant differences
between the old, higher heavy element abundances (GS) and the
new, lower heavy element abundances (AGS). The BS05(OP) model
was calculated with GS, but it adopted conservative theoretical
uncertainties in the solar neutrino fluxes to account for the differences
between GS and AGS. The models with GS are consistent with
helioseismological data, but the models with AGS are not. The
BPS08(GS) model may be considered to be the currently preferred
SSM. Its prediction for the fluxes from neutrino-producing reactions
is given in Table 13.2. Fig. 13.2 shows the solar-neutrino spectra
calculated with the BS05(OP) model which is similar to the
BPS08(GS) model.

Table 13.2: Neutrino-producing reactions in the Sun (first column)
and their abbreviations (second column). The neutrino fluxes pre-
dicted by the BPS08(GS) model [87] are listed in the third column.

Reaction Abbr. Flux (cm−2 s−1)

pp → d e+ ν pp 5.97(1 ± 0.006)× 1010

pe−p → d ν pep 1.41(1 ± 0.011)× 108

3He p → 4He e+ν hep 7.90(1 ± 0.15)× 103

7Be e− → 7Li ν + (γ) 7Be 5.07(1 ± 0.06)× 109

8B → 8Be∗ e+ν 8B 5.94(1 ± 0.11)× 106

13N → 13C e+ν 13N 2.88(1 ± 0.15)× 108

15O → 15N e+ν 15O 2.15(1+0.17
−0.16) × 108

17F → 17O e+ν 17F 5.82(1+0.19
−0.17) × 106

So far, solar neutrinos have been observed by chlorine (Homestake)
and gallium (SAGE, GALLEX, and GNO) radiochemical detectors
and water Cherenkov detectors using light water (Kamiokande and
Super-Kamiokande) and heavy water (SNO). Recently, a liquid
scintillation detector (Borexino) successfully observed low energy solar
neutrinos.

A pioneering solar neutrino experiment by Davis and collaborators
at Homestake using the 37Cl - 37Ar method proposed by Pontecorvo
[88] started in the late 1960’s. This experiment exploited νe absorption
on 37Cl nuclei followed by the produced 37Ar decay through orbital
e− capture,

νe +37 Cl → 37Ar + e− (threshold 814 keV). (13.65)

The 37Ar atoms produced are radioactive, with a half life (τ1/2) of
34.8 days. After an exposure of the detector for two to three times
τ1/2, the reaction products were chemically extracted and introduced
into a low-background proportional counter, where they were counted
for a sufficiently long period to determine the exponentially decaying
signal and a constant background. Solar-model calculations predict
that the dominant contribution in the chlorine experiment came from
8B neutrinos, but 7Be, pep, 13N, and 15O neutrinos also contributed
(for notations, refer to Table 13.2).

From the very beginning of the solar-neutrino observation [89],
it was recognized that the observed flux was significantly smaller
than the SSM prediction, provided nothing happens to the electron
neutrinos after they are created in the solar interior. This deficit has
been called “the solar-neutrino problem.”

Gallium experiments (GALLEX and GNO at Gran Sasso in Italy
and SAGE at Baksan in Russia) utilize the reaction

νe +71 Ga → 71Ge + e− (threshold 233 keV). (13.66)

They are sensitive to the most abundant pp solar neutrinos. However,
the solar-model calculations predict almost half of the capture rate
in gallium is due to other solar neutrinos. GALLEX presented the

first evidence of pp solar-neutrino observation in 1992 [7]. The
GALLEX Collaboration finished observations in early 1997 [8].
Since April, 1998, a newly defined collaboration, GNO (Gallium
Neutrino Observatory) continued the observations until April 2003.
The GNO results are published in Ref. 9. The GNO + GALLEX
joint analysis results are also presented in Ref. 9. SAGE initially
reported very low flux [90], but later observed similar flux to that
of GALLEX. The latest SAGE results are published in Ref. 6. The
SAGE experiment continues to collect data.

In 1987, the Kamiokande experiment in Japan succeeded in
real-time solar neutrino observation, utilizing νe scattering,

νx + e− → νx + e− , (13.67)

in a large water-Cherenkov detector. This experiment takes advantage
of the directional correlation between the incoming neutrino and the
recoil electron. This feature greatly helps the clear separation of the
solar-neutrino signal from the background. The Kamiokande result
gave the first direct evidence that neutrinos come from the direction
of the Sun [91]. Later, the high-statistics Super-Kamiokande
experiment [92,93] with a 50-kton water Cherenkov detector replaced
the Kamiokande experiment. Due to the high thresholds (7 MeV
in Kamiokande and 5 MeV at present in Super-Kamiokande) the
experiments observe pure 8B solar neutrinos. It should be noted that
the reaction (Eq. (13.67)) is sensitive to all active neutrinos, x = e, μ,
and τ . However, the sensitivity to νμ and ντ is much smaller than the
sensitivity to νe, σ(νμ,τ e) ≈ 0.16 σ(νee).

In 1999, a new real time solar-neutrino experiment, SNO
(Sudbury Neutrino Observatory), in Canada started observation. This
experiment used 1000 tons of ultra-pure heavy water (D2O) contained
in a spherical acrylic vessel, surrounded by an ultra-pure H2O shield.
SNO measured 8B solar neutrinos via the charged-current (CC) and
neutral-current (NC) reactions

νe + d → e− + p + p (CC) , (13.68)

and
νx + d → νx + p + n (NC) , (13.69)

as well as νe scattering, (Eq. (13.67)). The CC reaction, (Eq. (13.68)),
is sensitive only to νe, while the NC reaction, (Eq. (13.69)), is
sensitive to all active neutrinos. This is a key feature to solve the
solar neutrino problem. If it is caused by flavour transitions such as
neutrino oscillations, the solar neutrino fluxes measured by CC and
NC reactions would show a significant difference.

The Q-value of the CC reaction is −1.4 MeV and the e− energy is
strongly correlated with the νe energy. Thus, the CC reaction provides
an accurate measure of the shape of the 8B neutrino spectrum.
The contributions from the CC reaction and νe scattering can be
distinguished by using different cos θ distributions, where θ is the
angle of the e− momentum with respect to the Sun-Earth axis. While
the νe scattering events have a strong forward peak, CC events have
an approximate angular distribution of 1 − 1/3 cosθ.

The neutrino energy threshold of the NC reaction is 2.2 MeV. In
the pure D2O [11,12], the signal of the NC reaction was neutron
capture in deuterium, producing a 6.25-MeV γ-ray. In this case, the
capture efficiency was low and the deposited energy was close to the
detection threshold of 5 MeV. In order to enhance both the capture
efficiency and the total γ-ray energy (8.6 MeV), 2 tons of NaCl were
added to the heavy water in the second phase of the experiment [94].
Subsequently NaCl was removed and an array of 3He neutron counters
were installed for the third phase measurement [95]. These neutron
counters provided independent NC measurement with different
systematics from that of the second phase, and thus strengthened the
reliability of the NC measurement.

Another real time solar neutrino experiment, Borexino at Gran
Sasso in Italy, started solar neutrino observation in 2007. This
experiment measures solar neutrinos via νe scattering in 300 tons
of ultra-pure liquid scintillator. With a detection threshold as low
as 250 keV, the flux of monochromatic 0.862 MeV 7Be solar
neutrinos has been directly observed for the first time. The observed
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energy spectrum shows the characteristic Compton-edge over the
background [96]. Measurements of low energy solar neutrinos are
important not only to test the SSM further, but also to study the
MSW effect over the energy region spanning from sub-MeV to 10
MeV.

Table 13.3: Results from radiochemical solar-neutrino ex-
periments. The predictions of a recent standard solar model
BPS08(GS) are also shown. The first and the second errors in
the experimental results are the statistical and systematic errors,
respectively. SNU (Solar Neutrino Unit) is defined as 10−36

neutrino captures per atom per second.

37Cl→37Ar (SNU) 71Ga→71Ge (SNU)

Homestake [4] 2.56 ± 0.16 ± 0.16 –
GALLEX [8] – 77.5 ± 6.2+4.3

−4.7

GNO [9] – 62.9+5.5
−5.3 ± 2.5

GNO+GALLEX [9] – 69.3 ± 4.1 ± 3.6
SAGE [6] – 65.4+3.1+2.6

−3.0−2.8

SSM [BPS08(GS)] [87] 8.46+0.87
−0.88 127.9+8.1

−8.2

Table 13.3 and Table 13.4 show the results from solar-neutrino
experiments compared with the SSM calculations. Table 13.4 includes
the results from the SNO group’s recent joint analysis of the SNO
Phase I and Phase II data with the analysis threshold as low as 3.5
MeV (effective electron kinetic energy) and significantly improved
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Figure 13.3: Fluxes of 8B solar neutrinos, φ(νe), and
φ(νμ or τ ), deduced from the SNO’s CC, ES, and NC results
of the salt phase measurement [94]. The Super-Kamiokande
ES flux is from Ref. 99. The BS05(OP) standard solar model
prediction [86] is also shown. The bands represent the 1σ error.
The contours show the 68%, 95%, and 99% joint probability for
φ(νe) and φ(νμ or τ ). The figure is from Ref. 94.

systematic uncertainties [97]. It is seen from these tables that
the results from all the solar-neutrino experiments, except SNO’s
NC result, indicate significantly less flux than expected from the
solar-model predictions.

Table 13.4: Results from real time solar-neutrino experiments. The predictions
of a recent standard solar model BPS08(GS) are also shown. The first and the
second errors in the experimental results are the statistical and systematic errors,
respectively.

Reaction 8B ν flux 7Be ν flux
(106cm−2s−1) (109cm−2s−1)

Kamiokande [5] νe 2.80 ± 0.19 ± 0.33 −
Super-Kamiokande [93] νe 2.35 ± 0.02 ± 0.08 −
SNO Phase I [12] CC 1.76+0.06

−0.05 ± 0.09 −
(pure D20) νe 2.39+0.24

−0.23 ± 0.12 −
NC 5.09+0.44+0.46

−0.43−0.43 −
SNO Phase II [94] CC 1.68 ± 0.06+0.08

−0.09 −
(NaCl in D2O) νe 2.35 ± 0.22 ± 0.15 −

NC 4.94 ± 0.21+0.38
−0.34 −

SNO Phase III [95] CC 1.67+0.05+0.07
−0.04−0.08 −

(3He counters) νe 1.77+0.24+0.09
−0.21−0.10 −

NC 5.54+0.33+0.36
−0.31−0.34 −

SNO Phase I+II [97] NC 5.140+0.160+0.132
−0.158−0.117 −

(Joint Analysis) φ8B from fit to all data 5.046+0.159+0.107
−0.152−0.123 −

Borexino [96] νe − 3.36 ± 0.34

SSM [BPS08(GS)] [87] − 5.94(1 ± 0.11) 5.07(1 ± 0.06)
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13.4.2. Evidence for solar neutrino flavour conversion :
Solar neutrino experiments achieved remarkable progress in

the past ten years, and the solar-neutrino problem, which had
remained unsolved for more than 30 years, has been understood
as due to neutrino flavour conversion. In 2001, the initial SNO
CC result combined with the Super-Kamiokande’s high-statistics νe
elastic scattering result [98] provided direct evidence for flavour
conversion of solar neutrinos [11]. Later, SNO’s NC measurements
further strengthened this conclusion [12,94,95]. From the salt-phase
measurement [94], the fluxes measured with CC, ES, and NC events
were obtained as

φCC
SNO = (1.68 ± 0.06+0.08

−0.09) × 106cm−2s−1 , (13.70)

φES
SNO = (2.35 ± 0.22 ± 0.15)× 106cm−2s−1 , (13.71)

φNC
SNO = (4.94 ± 0.21+0.38

−0.34) × 106cm−2s−1 , (13.72)

where the first errors are statistical and the second errors are
systematic. In the case of νe → νμ,τ transitions, Eq. (13.72) is a
mixing-independent result and therefore tests solar models. It shows
good agreement with the 8B solar-neutrino flux predicted by the solar
model [86]. Fig. 13.3 shows the salt phase result of φ(νμ or τ ) versus
the flux of electron neutrinos φ(νe) with the 68%, 95%, and 99% joint
probability contours. The flux of non-νe active neutrinos, φ(νμ or τ ),
can be deduced from these results. It is
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subtracted ν̄e spectrum to the predicted one without oscillations
(survival probability) as a function of L0/E, where L0=180km.
The curves show the best-fit expectations for ν̄e oscillations. The
figure is from Ref. [101].

φ(νμ or τ ) =
(
3.26 ± 0.25+0.40

−0.35

)
× 106cm−2s−1. (13.73)

The non-zero φ(νμ or τ ) is strong evidence for neutrino flavor
conversion. These results are consistent with those expected from
the LMA (large mixing angle) solution of solar neutrino oscillation
in matter [25,26] with Δm2� ∼ 5 × 10−5 eV2 and tan2θ� ∼ 0.45.
However, with the SNO data alone, the possibility of other solutions
cannot be excluded with sufficient statistical significance.

13.4.3. KamLAND experiment : KamLAND is a 1-kton ultra-
pure liquid scintillator detector located at the old Kamiokande’s site
in Japan. The primary goal of the KamLAND experiment was a
long-baseline (flux-weighted average distance of ∼ 180 km) neutrino
oscillation studies using ν̄e’s emitted from nuclear power reactors.
The reaction ν̄e + p → e+ + n is used to detect reactor ν̄e’s and
a delayed coincidence of the positron with a 2.2 MeV γ-ray from
neutron capture on a proton is used to reduce the backgrounds. With
the reactor ν̄e’s energy spectrum (< 8 MeV) and a prompt-energy
analysis threshold of 2.6 MeV, this experiment has a sensitive Δm2

range down to ∼ 10−5 eV2. Therefore, if the LMA solution is the

real solution of the solar neutrino problem, KamLAND should observe
reactor ν̄e disappearance, assuming CPT invariance.

The first KamLAND results [15] with 162 ton·yr exposure were
reported in December 2002. The ratio of observed to expected
(assuming no ν̄e oscillations) number of events was

Nobs − NBG

NNoOsc
= 0.611± 0.085 ± 0.041 (13.74)
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Figure 13.5: 68%, 95%, and 99.73% confidence level allowed
parameter regions as well as the best-fit points are shown for
(left) global solar neutrino data analysis and (right) global solar
neutrino + KamLAND data analysis. This figure is taken from
Ref. 95.

with obvious notation. This result showed clear evidence of an event
deficit expected from neutrino oscillations. The 95% CL allowed
regions are obtained from the oscillation analysis with the observed
event rates and positron spectrum shape. A combined global solar
+ KamLAND analysis showed that the LMA is a unique solution
to the solar neutrino problem with > 5σ CL [100]. With increased
statistics [16,101], KamLAND observed not only the distortion of the
ν̄e spectrum, but also the periodic feature of the ν̄e survival probability
expected from neutrino oscillations for the first time (see Fig. 13.4). A
two-neutrino oscillation analysis gave Δm2� = 7.58+0.14+0.15

−0.13−0.15 × 10−5

eV2 and tan2θ� = 0.56+0.10+0.10
−0.07−0.06.

13.4.4. Global neutrino oscillation analysis :
The SNO Collaboration updated [95] a two-neutrino oscilla-

tion analysis including all the solar neutrino data (SNO, Super-
Kamiokande, chlorine, gallium, and Borexino) and the KamLAND
data [101]. The best fit parameters obtained from this global
solar + KamLAND analysis are Δm2� = 7.59+0.19

−0.21 × 10−5 eV2 and
θ� = 34.4+1.3

−1.2 degrees (tan2θ� = 0.468+0.048
−0.040). The global solar

analysis, however, gives the best fit parameters of Δm2� = 4.90× 10−5

eV2 and tan2θ� = 0.437. The allowed parameter regions obtained
from these two analyses are shown in Fig. 13.5. The best-fit values of
Δm2� from the two analyses show a rather large difference. However,
according to the recent SNO’s two-neutrino oscillation analyses using
its Phase I and Phase II joint analysis [97] results, this difference has
become smaller. Namely, the best fit parameters obtained from the
new global solar + KamLAND analysis are Δm2� = 7.59+0.20

−0.21 × 10−5

eV2 and θ� = 34.06+1.16
−0.84 degrees (tan2θ� = 0.457+0.040

−0.029), and those
from the global solar analysis are Δm2� = 5.89+2.13

−2.16 × 10−5 eV2 and
tan2θ� = 0.457+0.038

−0.041 [97].

13.5. Measurements of |Δm2
A| and θA

13.5.1. Atmospheric neutrino results :
The first compelling evidence for the neutrino oscillation was

presented by the Super-Kamiokande Collaboration in 1998 [13]
from the observation of atmospheric neutrinos produced by cosmic-
ray interactions in the atmosphere. The zenith-angle distributions
of the μ-like events which are mostly muon-neutrino and muon
antineutrino initiated charged-current interactions, showed a clear
deficit compared to the no-oscillation expectation. Note that a water
Cherenkov detector cannot measure the charge of the final-state
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Figure 13.6: The zenith angle distributions for fully contained
1-ring e-like and μ-like events with visible energy < 1.33 GeV
(sub-GeV) and > 1.33 GeV (multi-GeV). For multi-GeV μ-like
events, a combined distribution with partially contained (PC)
events is shown. The dotted histograms show the non-oscillated
Monte Carlo events, and the solid histograms show the best-fit
expectations for νμ ↔ ντ oscillations. (This figure is provided by
the Super-Kamiokande Collaboration.)

leptons, and therefore neutrino and antineutrino induced events
cannot be discriminated. Neutrino events having their vertex in the
22.5 kton fiducial volume in Super-Kamiokande are classified into fully
contained (FC) events and partially contained (PC) events. The FC
events are required to have no activity in the anti-counter. The total
visible energy (proportional to the total number of photoelectrons
measured by the photomultiplier tubes in the inner detector) can be
measured for the FC events.

FC events are subjected to particle identification of the final-state
particles. Single-ring events have only one charged lepton which
radiates Chrenkov light in the final state, and particle identification
is particularly clean for single-ring FC events. The method adopted
for the FC events identifies the particle types as e-like or μ-like based
on the pattern of each Cherenkov ring. A ring produced by an e-like
(e±, γ) particle exhibits a more diffuse pattern than that produced
by a μ-like (μ±, π±) particle, since an e-like particle produces an
electromagnetic shower and low-energy electrons suffer considerable
multiple Coulomb scattering in water. All the PC events were assumed
to be μ-like since the PC events comprise a 98% pure charged-current
νμ sample.

Fig. 13.6 shows the zenith-angle distributions of e-like and μ-like
events from the SK-I measurement [102]. cosθ = 1 corresponds
to the downward direction, while cosθ = −1 corresponds to the
upward direction. Events included in these plots are single-ring FC
events subdivided into sub-GeV (visible energy < 1.33 GeV) events
and multi-GeV (visible energy > 1.33 GeV) events. Note that the
zenith-angle distribution of the multi-GeV μ-like events is shown
combined with that of the PC events. The final-state leptons in these
events have good directional correlation with the parent neutrinos.
The dotted histograms show the Monte Carlo expectation for neutrino
events. If the produced flux of atmospheric neutrinos of a given
flavour remains unchanged at the detector, the data should have
similar distributions to the expectation. However, the zenith-angle
distribution of the μ-like events shows a strong deviation from the
expectation. On the other hand, the zenith-angle distribution of the
e-like events is consistent with the expectation. This characteristic
feature may be interpreted that muon neutrinos coming from the
opposite side of the Earth’s atmosphere, having travelled ∼ 10, 000 km,
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Figure 13.7: Allowed region for the νμ ↔ ντ oscillation
parameters from the MINOS results published in 2008. The 68
% and 90 % CL allowed regions are shown together with the
SK-I and K2K 90 % CL allowed regions. This figure is taken
from Ref. 22.

oscillate into other neutrinos and disappeared, while oscillations still
do not take place for muon neutrinos coming from above the detector,
having travelled a few km. Disappeared muon neutrinos may have
oscillated into tau neutrinos because there is no indication of electron
neutrino appearance. The atmospheric neutrinos corresponding to the
events shown in Fig. 13.6 have E = 1 ∼ 10 GeV. With L = 10000 km,
the hypothesis of neutrino oscillations suggests Δm2 ∼ 10−3 − 10−4

eV2. The solid histograms show the best-fit results of a two-neutrino
oscillation analysis with the hypothesis of νμ ↔ ντ . (To constrain
the flux of atmospheric neutrinos through the accurately predicted
νμ/νe ratio, e-like events are included in the fit.) They reproduce
the observed data well. The oscillation parameters determined
by the SK-I atmospheric neutrino data are sin22θA > 0.92 and
1.5 × 10−3 < |Δm2

A| < 3.4 × 10−3 eV2 at 90% confidence level. For
the allowed parameter region, see Fig. 13.7.

Though the SK-I atmospheric neutrino observations gave compelling
evidence for muon neutrino disappearance which is consistent with
two-neutrino oscillation νμ ↔ ντ [103], the question may be asked
whether the observed muon neutrino disappearance is really due to
neutrino oscillations. First, other exotic explanations such as neutrino
decay [104] and quantum decoherence [105] cannot be completely
ruled out from the zenith-angle distributions alone. To provide firm
evidence for neutrino oscillation, we need to confirm the characteristic
sinusoidal behavior of the conversion probability as a function of
neutrino energy E for a fixed distance L in the case of long-baseline
neutrino oscillation experiments, or as a function of L/E in the
case of atmospheric neutrino experiments. By selecting events with
high L/E resolution, evidence for the dip in the L/E distribution
was observed at the right place expected from the interpretation of
the SK-I data in terms of νμ ↔ ντ oscillations [14], Fig. 13.8.
This dip cannot be explained by alternative hypotheses of neutrino
decay and neutrino decoherence, and they are excluded at more
than 3σ in comparison with the neutrino oscillation interpretation.
At 90% CL, the constraints obtained from the L/E analysis are
1.9 × 10−3 < |Δm2

A| < 3.0 × 10−3 eV2 and sin22θA > 0.90. (see
Fig. 13.7).

Second, a natural question is whether appearance of tau neutrinos
has been observed in the Super-Kamiokande detector. Detection of ντ

CC reactions in a water Cherenkov detector is not easy. In addition
to the low flux of atmospheric neutrinos above the threshold of these
reactions, 3.5 GeV, the interactions are mostly deep inelastic scattering,
leading to complicated multiring event pattern. Nevertheless, search
for a ντ appearance signal by using criteria to enhance ντ CC events
(high visible energy, high average multiplicity, etc.) found candidate
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Figure 13.8: Results of the L/E analysis of SK-I atmospheric
neutrino data. The points show the ratio of the data to the
Monte Carlo prediction without oscillations, as a function of
the reconstructed L/E. The error bars are statistical only. The
solid line shows the best fit with 2-flavour νμ ↔ ντ oscillations.
The dashed and dotted lines show the best fit expectations
for neutrino decay and neutrino decoherence hypotheses,
respectively. (From Ref. 14.)

events in the upward-going direction as expected [103]. However, the
significance of the signal is yet marginal; no ντ appearance hypothesis
is disfavored at only 2.4σ.

13.5.2. Results from accelerator experiments :
The Δm2 ≥ 2 × 10−3 eV2 region can be explored by accelerator-

based long-baseline experiments with typically E ∼ 1 GeV and
L ∼ several hundred km. With a fixed baseline distance and a
narrower, well understood neutrino spectrum, the value of |Δm2

A|
and, with higher statistics, also the mixing angle, are potentially
better constrained in accelerator experiments than from atmospheric
neutrino observations.

The K2K (KEK-to-Kamioka) long-baseline neutrino oscillation
experiment [20] is the first accelerator-based experiment with a
neutrino path length extending hundreds of kilometers. K2K aimed
at confirmation of the neutrino oscillation in νμ disappearance
in the |Δm2

A| ≥ 2 × 10−3 eV2 region. A horn-focused wide-band
muon neutrino beam having an average L/Eν ∼ 200 (L = 250 km,
〈Eν〉 ∼ 1.3 GeV), was produced by 12-GeV protons from the KEK-PS
and directed to the Super-Kamiokande detector. The spectrum and
profile of the neutrino beam were measured by a near neutrino detector
system located 300 m downstream from the production target.

The construction of the K2K neutrino beam line and the near
detector began before Super-Kamiokande’s discovery of atmospheric
neutrino oscillations, and the stable data-taking started in June 1999.
Super-Kamiokande events caused by accelerator-produced neutrinos
were selected using the timing information from the global positioning
system. Data were intermittently taken until November 2004. The
total number of protons on target (POT) for physics analysis amounted
to 0.92 ×1020. The observed number of beam-originated FC events in
the 22.5 kton fiducial volume of Super-Kamiokande was 112, compared
with an expectation of 158.1+9.2

−8.6 events without oscillation. For 58
1-ring μ-like subset of the data, the neutrino energy was reconstructed
from measured muon momentum and angle, assuming CC quasielestic
kinematics. The measured energy spectrum showed the distortion
expected from neutrino oscillations. From a 2-flavour neutrino
oscillation analysis, the allowed parameter region shown in Fig. 13.7 is
obtained. At sin22θA = 1.0, 1.9 × 10−3 < |Δm2

A| < 3.5 × 10−3 eV2 at
the 90% CL with the best-fit value of 2.8× 10−3 eV2. The probability
that the observations are due to a statistical fluctuation instead of
neutrino oscillation is 0.0015% or 4.3 σ [20].

MINOS is the second long-baseline neutrino oscillation experiment
with near and far detectors. Neutrinos are produced by the NuMI
(Neutrinos at the Main Injector) facility using 120 GeV protons from
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Figure 13.9: Ratio of the MINOS far detector data and the
expected spectrum for no oscillations. The best-fit with the
hypothesis of νμ → ντ oscillations as well as the best fit to
alternative models (neutrino decay and decoherence) is also
shown. This figure is taken from Ref. 22.

the Fermilab Main Injector. The far detector is a 5.4 kton (total mass)
iron-scintillator tracking calorimeter with toroidal magnetic field,
located underground in the Soudan mine. The baseline distance is 735
km. The near detector is also an iron-scintillator tracking calorimeter
with toroidal magnetic field, with a total mass of 0.98 kton. The
neutrino beam is a horn-focused wide-band beam. Its energy spectrum
can be varied by moving the target position relative to the first horn
and changing the horn current.

MINOS started the neutrino-beam run in 2005. Initial results were
reported [21] using tha data taken between May 2005 and February
2006 with 1.27×1020 POT, and the updated results corresponding to a
total POT of 3.36× 1020 (May 2005 to July 2007) were published [22]
recently. During this period, a “low-energy” option was mostly chosen
for the spectrum of the neutrino beam so that the flux was enhanced in
the 1-5 GeV energy range. In the far detector, a total of 848 CC events
were produced by the NuMI beam, compared to the unoscillated
expectation of 1065 ± 60 (syst) events. Fig. 13.9 shows the ratio of
observed energy spectrum and the expected one with no oscillation.
Fig. 13.7 shows the 68% and 90% CL allowed regions obtained from
the νμ → ντ oscillation analysis. The results are compared with the
90% CL allowed regions obtained from the initial MINOS [21], SK-I
zenith-angle dependence [102], the SK-I L/E analysis [14], and
the K2K results [20]. The MINOS results are consistent with the
SK-I and K2K results, and constrain the oscillation parameters as
|Δm2

A| = (2.43 ± 0.13) × 10−3 eV2 (68% CL) and sin2 2θA > 0.90
at 90% CL. The alternative models to explain the νμ disappearance,
neutrino decay and quantum decoherence of neutrinos, are disfavored
at the 3.7 and 5.7σ, respectively, by the MINOS data (see Fig. 13.9).

The regions of neutrino parameter space favoured or excluded by
various neutrino oscillation experiments are shown in Fig. 13.10.

A promising method to confirm the appearance of ντ from νμ → ντ

oscillations is an accelerator long-baseline experiment using emulsion
technique to identify short-lived τ leptons event-by-event. The only
experiment of this kind is OPERA [106] with a neutrino source at
CERN and a detector at Gran Sasso with the baseline distance of 732
km. The detector is a combination of the “Emulsion Cloud Chamber”
and magnetized spectrometer. The CNGS (CERN Neutrinos to Gran
Sasso) neutrino beam with 〈Eν〉 = 17 GeV is produced by high-energy
protons from the CERN SPS. With so-called shared SPS operation,
4.5 × 1019 POT/yr is expected. With this beam and 1.35 kt target
mass, a ντ appearance signal of about 10 events is expected in 5 years
run with full intensity.
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Figure 13.10: The regions of squared-mass splitting and
mixing angle favored or excluded by various experiments.
The figure was contributed by H. Murayama (University
of California, Berkeley, and IPMU, University of Tokyo).
References to the data used in the figure can be found at
http://hitoshi.berkeley.edu/neutrino.

13.6. Measurements of θ13

Reactor ν̄e disappearance experiments with L ∼ 1 km, 〈E〉 ∼ 3
MeV are sensitive to ∼ E/L ∼ 3×10−3 eV2 ∼ |Δm2

A|. At this baseline
distance, the reactor ν̄e oscillations driven by Δm2� are negligible.
Therefore, as can be seen from Eq. (13.22) and Eq. (13.24), θ13

can be directly measured. A reactor neutrino oscillation experiment
at the Chooz nuclear power station in France [107] was the first
experiment of this kind. The detector was located in an underground
laboratory with 300 mwe (meter water equivalent) rock overburden,
at about 1 km from the neutrino source. It consisted of a central
5-ton target filled with 0.09% gadolinium loaded liquid scintillator,
surrounded by an intermediate 17-ton and outer 90-ton regions filled
with undoped liquid scintillator. Reactor ν̄e’s were detected via the
reaction ν̄e + p → e+ + n. Gd-doping was chosen to maximize the
neutron capture efficiency. The CHOOZ experiment [107] found
no evidence for ν̄e disappearance. The 90% CL upper limit for
Δm2 = 2.0 × 10−3 eV2 is sin22θ13 < 0.19 and for the MINOS
measurement [22] of |Δm2

A| = 2.43 × 10−3 eV, sin22θ13 < 0.15, both
at 90% CL.

A similar reactor neutrino oscillation experiment was also conducted
at the Palo Verde Nuclear Generating Station in Arizona [108]. This
experiment used a segmented Gd-loaded liquid scintillator detector
with a total mass of 11.34 tons. The detector was located at a
shallow underground site with only 32 mwe. This experiment found no

evidence for ν̄e disappearance either [108]. The excluded oscillation
parameter region is consistent with, but less restrictive than, the
CHOOZ results.

In the accelerator neutrino oscillation experiments with conventional
neutrino beams, θ13 can be measured using νμ → νe appearance. The
K2K experiment searched for the νμ → νe appearance signal [109],
but no evidence was found. Using the dominant term in the probability
of νμ → νe appearance (see Eq. (13.23) and Eq. (13.24)),

P (νμ → νe) = sin2 2θ13 · sin2 θ23 · sin2(1.27Δm2L/E)

∼ 1
2

sin2 2θ13 sin2(1.27Δm2L/E) , (13.75)

the 90% CL upper limit sin22θ13 < 0.26 was obtained at the K2K
measurement of Δm2 = 2.8 × 10−3 eV2. Though this limit is less
significant than the CHOOZ limit, it is the first result obtained from
an accelerator νe appearance experiment.

By examining the exact expression for the oscillation probability,
however, it is understood that some of the neglected terms could have
rather large effects and the unknown CP-violating phase δ causes
uncertainties in determining the value of θ13. Actually, from the
measurement of νμ → νe appearance, θ13 is given as a function of δ
for a given sign of Δm2

32. Also, deviations from maximal θ23 mixing
would cause a further uncertainty. Therefore, a single experiment
with a neutrino beam cannot determine the value of θ13 though it is
possible to establish non-zero θ13.

Turning to atmospheric and solar neutrino observations, Eq. (13.40)
to Eq. (13.43) and Eq. (13.62) indicate that they are sensitive to
θ13 through sub-leading effects. So far the SK group analyzed its
atmospheric neutrino data [64] and the SNO group analyzed [97]
the data from all solar neutrino experiments, with or without the
KamLAND data, in terms of 3-neutrino oscillations.

The SK-I atmospheric neutrino data were analyzed in the three-
neutrino oscillation framework with the approximation of one mass
scale dominance (Δm2� = 0) [64]. Since the matter effects in
νe ↔ νμ,τ oscillations cause differences for the normal and inverted
mass hierarchy cases, both cases were analyzed. For the Δm2

A > 0
case, sin2θ13 < 0.14 and 0.37 < sin2θ23 < 0.65 was obtained at 90%
CL, while for the Δm2

A < 0 case, weaker constraints, sin2θ13 < 0.27
and 0.37 < sin2θ23 < 0.69 were obtained at 90% CL.

The recent SNO’s three-neutrino oscillation analysis using its Phase
I and Phase II joint analysis [97] results and the results from all
other solar neutrino experiments and the KamLAND experiment has
yielded the best fit value of sin2θ13 = 2.00+2.09

−1.63 × 10−2 [97]. At the
95% CL, this result implies sin2θ13 < 0.057 [97].

Finally, it should be noted that a global analysis [110] of all
available neutrino oscillation data gave a hint of non-zero sin2θ13;
sin2θ13 = 0.016± 0.010 at 1σ CL.

13.7. The three neutrino mixing

All existing compelling data on neutrino oscillations can be
described assuming 3-flavour neutrino mixing in vacuum. This is the
minimal neutrino mixing scheme which can account for the currently
available data on the oscillations of the solar (νe), atmospheric (νμ and
ν̄μ), reactor (ν̄e) and accelerator (νμ) neutrinos. The (left-handed)
fields of the flavour neutrinos νe, νμ and ντ in the expression for the
weak charged lepton current in the CC weak interaction Lagrangian,
are linear combinations of the LH components of the fields of three
massive neutrinos νj :

LCC = − g√
2

∑
l=e,μ,τ

lL(x) γα νlL(x)Wα†(x) + h.c. ,

νlL(x) =
3∑

j=1

Ulj νjL(x), (13.76)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The
mixing matrix U can be parameterized by 3 angles, and, depending on
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whether the massive neutrinos νj are Dirac or Majorana particles, by
1 or 3 CP violation phases [30,31]:

U =

⎡
⎣ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎤
⎦

× diag(1, ei
α21
2 , ei

α31
2 ) . (13.77)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π]
is the Dirac CP violation phase and α21, α31 are two Majorana CP
violation phases. Thus, in the case of massive Dirac neutrinos, the
neutrino mixing matrix U is similar, in what concerns the number of
mixing angles and CP violation phases, to the CKM quark mixing
matrix. The presence of two additional physical CP violation phases
in U if νj are Majorana particles is a consequence of the special
properties of the latter (see, e.g., [29,30]) .

As we see, the fundamental parameters characterizing the 3-
neutrino mixing are: i) the 3 angles θ12, θ23, θ13, ii) depending on the
nature of massive neutrinos νj - 1 Dirac (δ), or 1 Dirac + 2 Majorana
(δ, α21, α31), CP violation phases, and iii) the 3 neutrino masses,
m1, m2, m3. Thus, depending on whether the massive neutrinos are
Dirac or Majorana particles, this makes 7 or 9 additional parameters
in the “Standard” Model of particle interactions.

The neutrino oscillation probabilities depend (Section 13.2), in
general, on the neutrino energy, E, the source-detector distance L, on
the elements of U and, for relativistic neutrinos used in all neutrino
experiments performed so far, on Δm2

ij ≡ (m2
i −m2

j ), i �= j. In the case
of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say Δm2

21 �= 0 and Δm2
31 �= 0. The numbering of

massive neutrinos νj is arbitrary. It proves convenient from the point
of view of relating the mixing angles θ12, θ23 and θ13 to observables,
to identify |Δm2

21| with the smaller of the two neutrino mass squared
differences, which, as it follows from the data, is responsible for the
solar νe and, the observed by KamLAND, reactor ν̄e oscillations. We
will number (just for convenience) the massive neutrinos in such a
way that m1 < m2, so that Δm2

21 > 0. With these choices made,
there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |Δm2

31| or |Δm2
32|,

can be associated with the experimentally observed oscillations of the
atmospheric νμ and ν̄μ and accelerator νμ. The effects of Δm2

31 or
Δm2

32 in the oscillations of solar νe, and of Δm2
21 in the oscillations

of atmospheric νμ and ν̄μ and of accelerator νμ, are relatively small
and subdominant as a consequence of the facts that i) L, E and L/E
in the experiments with solar νe and with atmospheric νμ and ν̄μ

or accelerator νμ, are very different, ii) the conditions of production
and propagation (on the way to the detector) of the solar νe and
of the atmospheric νμ and ν̄μ or accelerator νμ, are very different,
and iii) |Δm2

21| and |Δm2
31| (|Δm2

32|) in the case of m1 < m2 < m3

(m3 < m1 < m2), as it follows from the data, differ by approximately
a factor of 30, |Δm2

21| 	 |Δm2
31(32)|, |Δm2

21|/|Δm2
31(32)| ∼= 0.03. This

implies that in both cases of m1 < m2 < m3 and m3 < m1 < m2 we
have Δm2

32
∼= Δm2

31 with |Δm2
31 − Δm2

32| = |Δm2
21| 	 |Δm2

31,32|.
It follows from the results of CHOOZ and Palo Verde experiments

with reactor ν̄e [107,108] that, in the convention we use, in which
0 < Δm2

21 < |Δm2
31(32)|, the element |Ue3|=sin θ13 of the neutrino

mixing matrix U is small (we will quantify this statement below).
This makes it possible to identify the angles θ12 and θ23 as the
neutrino mixing angles associated with the solar νe and the dominant
atmospheric νμ (and ν̄μ) oscillations, respectively. The angles θ12

and θ23 are often called “solar” and “atmospheric” neutrino mixing
angles, and are often denoted as θ12 = θ� and θ23 = θA (or
θatm) while Δm2

21 and Δm2
31 are often referred to as the “solar”

and “atmospheric” neutrino mass squared differences and are often
denoted as Δm2

21 ≡ Δm2� , Δm2
31 ≡ Δm2

A (or Δm2
atm).

The solar neutrino data tell us that Δm2
21 cos 2θ12 > 0. In the

convention employed by us we have Δm2
21 > 0. Correspondingly, in

this convention one must have cos 2θ12 > 0.
The existing neutrino oscillation data allow us to determine

the parameters which drive the solar neutrino and the dominant

atmospheric neutrino oscillations, Δm2� = Δm2
21, θ12, and |Δm2

A| =
|Δm2

31| ∼= |Δm2
32|, θ23, with a relatively good precision, and to obtain

rather stringent limits on the angle θ13 [107,108]. The best fit values
and the 99.73% C.L. allowed ranges of Δm2

21, sin2 θ12, |Δm2
31(32)| and

sin2 θ23, read [111,112]:

(Δm2
21)BF = 7.65 × 10−5 eV 2,

7.05 × 10−5 eV 2 ≤ Δm2
21 ≤ 8.34 × 10−5 eV 2, (13.78)

(sin2 θ12)BF = 0.304, 0.25 ≤ sin2 θ12 ≤ 0.37 , (13.79)

(|Δm2
31|)BF = 2.40 × 10−3 eV 2,

2.07 × 10−3 eV 2 ≤ |Δm2
31| ≤ 2.75 × 10−3 eV 2, (13.80)

(sin2 θ23)BF = 0.5, 0.36 ≤ sin2 θ23 ≤ 0.67 . (13.81)

The existing SK atmospheric neutrino, K2K and MINOS data do
not allow to determine the sign of Δm2

31(32). Maximal solar neutrino
mixing, i.e., θ12 = π/4, is ruled out at more than 6σ by the
data. Correspondingly, one has cos 2θ12 ≥ 0.26 (at 99.73% C.L.). A
stringent upper limit on the angle θ13 was provided by the CHOOZ
experiment with reactor ν̄e [107]: at |Δm2

31| ∼= 2.4 × 10−3 eV2 the
limit reads

sin2 2θ13 < 0.15 at 90% C.L. (13.82)

A combined 3-neutrino oscillation analysis of the global data gives
[112]:

sin2 θ13 < 0.035 (0.056) at 90% (99.73%) C.L. (13.83)

These results imply that θ23
∼= π/4, θ12

∼= π/5.4 and that
θ13 < π/13. Correspondingly, the pattern of neutrino mixing is
drastically different from the pattern of quark mixing.

At present no experimental information on the Dirac and Majorana
CP violation phases in the neutrino mixing matrix is available.
Thus, the status of CP symmetry in the lepton sector is unknown.
If θ13 �= 0, the Dirac phase δ can generate CP violation effects in
neutrino oscillations [30,42,43]. The magnitude of CP violation in
νl → νl′ and ν̄l → ν̄l′ oscillations, l �= l′ = e, μ, τ , is determined, as we
have seen, by the rephasing invariant JCP (see Eq. (13.19)), which
in the “standard” parametrisation of the neutrino mixing matrix
(Eq. (13.77)) has the form:

JCP ≡ Im (Uμ3 U∗
e3 Ue2 U∗

μ2) =
1
8

cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ .

(13.84)
Thus, the size of CP violation effects in neutrino oscillations depends
on the magnitude of the currently unknown values of the “small”
angle θ13 and the Dirac phase δ.

As we have indicated, the existing data do not allow one
to determine the sign of Δm2

A = Δm2
31(2). In the case of 3-

neutrino mixing, the two possible signs of Δm2
31(2) correspond

to two types of neutrino mass spectrum. In the widely used
conventions of numbering the neutrinos with definite mass in the
two cases, the two spectra read: i) spectrum with normal ordering:
m1 < m2 < m3, Δm2

A = Δm2
31 > 0, Δm2� ≡ Δm2

21 > 0,

m2(3) = (m2
1 + Δm2

21(31))
1
2 ; ii) spectrum with inverted ordering

(IO): m3 < m1 < m2, Δm2
A = Δm2

32 < 0, Δm2� ≡ Δm2
21 > 0,

m2 = (m2
3 + Δm2

23)
1
2 , m1 = (m2

3 + Δm2
23 − Δm2

21)
1
2 .

Depending on the values of the lightest neutrino mass [113], min(mj),
the neutrino mass spectrum can also be:

– Normal Hierarchical (NH): m1 	 m2 < m3, m2
∼= (Δm2� )

1
2 ,

m3
∼= |Δm2

A|
1
2 ; or

– Inverted Hierarchical (IH): m3 	 m1 < m2, with m1,2
∼=

|Δm2
A|

1
2 ∼ 0.05 eV; or

– Quasi-Degenerate (QD): m1
∼= m2

∼= m3
∼= m0, m2

j � |Δm2
A|,

m0 � 0.10 eV.
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All three types of spectrum are compatible with the existing
constraints on the absolute scale of neutrino masses mj . Information
about the latter can be obtained, e.g., by measuring the spectrum of
electrons near the end point in 3H β-decay experiments [115–117]
and from cosmological and astrophysical data. The most stringent
upper bounds on the ν̄e mass were obtained in the Troitzk [116] and
Mainz [117] experiments:

mν̄e < 2.3 eV at 95% C.L. (13.85)

We have mν̄e
∼= m1,2,3 in the case of QD spectrum. The KATRIN

experiment [117] is planned to reach sensitivity of mν̄e ∼ 0.20 eV,
i.e., it will probe the region of the QD spectrum.

The Cosmic Microwave Background (CMB) data of the WMAP
experiment, combined with supernovae data and data on galaxy
clustering can be used to obtain an upper limit on the sum of
neutrinos masses [118] (see review on Cosmological Parameters):∑

j mj � 0.68 eV, 95% C.L. A more conservative estimate of the
uncertainties in the astrophysical data leads to a somewhat weaker
constraint (see e.g., Ref. 119):

∑
j mj � 1.7 eV, 95% C.L.

It follows from these data that neutrino masses are much smaller
than the masses of charged leptons and quarks. If we take as
an indicative upper limit mj � 0.5 eV, we have mj/ml,q � 10−6,
l = e, μ, τ , q = d, s, b, u, c, t. It is natural to suppose that the
remarkable smallness of neutrino masses is related to the existence of
a new fundamental mass scale in particle physics, and thus to new
physics beyond that predicted by the Standard Model.

13.7.1. The see-saw mechanism and the baryon asymmetry
of the Universe :

A natural explanation of the smallness of neutrino masses is
provided by the see-saw mechanism of neutrino mass generation [3].
An integral part of the simplest version of this mechanism - the
so-called “type I see-saw”, are the RH neutrinos νlR (RH neutrino
fields νlR(x)). The latter are assumed to possess a Majorana mass
term as well as Yukawa type coupling LY(x) with the Standard
Model lepton and Higgs doublets, ψlL(x) and Φ(x), respectively,
(ψlL(x))T = (νT

lL(x) lTL(x)), l = e, μ, τ , (Φ(x))T = (Φ(0) Φ(−)). In
the basis in which the Majorana mass matrix of RH neutrinos is
diagonal, we have:

LY,M(x) =
(
λil NiR(x)Φ†(x)ψlL(x) + h.c.

)
− 1

2
Mi Ni(x)Ni(x) ,

(13.86)
where λil is the matrix of neutrino Yukawa couplings and Ni

(Ni(x)) is the heavy RH Majorana neutrino (field) possessing a mass
Mi > 0. When the electroweak symmetry is broken spontaneously,
the neutrino Yukawa coupling generates a Dirac mass term:
mD

il NiR(x) νlL(x)+h.c., with mD = vλ, v = 174 GeV being the Higgs
doublet v.e.v. In the case when the elements of mD are much smaller
than Mk, |mD

il | 	 Mk, i, k = 1, 2, 3, l = e, μ, τ , the interplay between
the Dirac mass term and the mass term of the heavy (RH) Majorana
neutrinos Ni generates an effective Majorana mass (term) for the LH
flavour neutrinos [3]: mLL

l′l
∼= −(mD)T

l′jM
−1
j mD

jl . In grand unified

theories, mD is typically of the order of the charged fermion masses.
In SO(10) theories, for instance, mD coincides with the up-quark
mass matrix. Taking indicatively mLL ∼ 0.1 eV, mD ∼ 100 GeV,
one finds M ∼ 1014 GeV, which is close to the scale of unification
of the electroweak and strong interactions, MGUT

∼= 2 × 1016 GeV.
In GUT theories with RH neutrinos one finds that indeed the
heavy Majorana neutrinos Nj naturally obtain masses which are by
few to several orders of magnitude smaller than MGUT . Thus, the
enormous disparity between the neutrino and charged fermion masses
is explained in this approach by the huge difference between effectively
the electroweak symmetry breaking scale and MGUT .

An additional attractive feature of the see-saw scenario is that
the generation and smallness of neutrino masses is related via
the leptogenesis mechanism [2] to the generation of the baryon
asymmetry of the Universe. The Yukawa coupling in Eq. (13.86),
in general, is not CP conserving. Due to this CP-nonconserving
coupling the heavy Majorana neutrinos undergo, e.g., the decays

Nj → l+ + Φ(−), Nj → l− + Φ(+), which have different rates:
Γ(Nj → l+ + Φ(−)) �= Γ(Nj → l− + Φ(+)). When these decays occur
in the Early Universe at temperatures somewhat below the mass of,
say, N1, so that the latter are out of equilibrium with the rest of
the particles present at that epoch, CP violating asymmetries in the
individual lepton charges Ll, and in the total lepton charge L, of the
Universe are generated. These lepton asymmetries are converted into
a baryon asymmetry by (B − L) conserving, but (B + L) violating,
sphaleron processes, which exist in the Standard Model and are
effective at temperatures T ∼ (100−1012) GeV. If the heavy neutrinos
Nj have hierarchical spectrum, M1 	 M2 	 M3, the observed baryon
asymmetry can be reproduced provided the mass of the lightest one
satisfies M1 � 109 GeV [120]. Thus, in this scenario, the neutrino
masses and mixing and the baryon asymmetry have the same origin
- the neutrino Yukawa couplings and the existence of (at least two)
heavy Majorana neutrinos. Moreover, quantitative studies based on
recent advances in leptogenesis theory [121] have shown that the
Dirac and/or Majorana phases in the neutrino mixing matrix U can
provide the CP violation, necessary in leptogenesis for the generation
of the observed baryon asymmetry of the Universe [122]. This
implies, in particular, that if the CP symmetry is established not to
hold in the lepton sector due to U , at least some fraction (if not all)
of the observed baryon asymmetry might be due to the Dirac and/or
Majorana CP violation present in the neutrino mixing.

13.7.2. The nature of massive neutrinos :
The experiments studying flavour neutrino oscillations cannot

provide information on the nature - Dirac or Majorana, of massive
neutrinos [30,44]. Establishing whether the neutrinos with definite
mass νj are Dirac fermions possessing distinct antiparticles, or
Majorana fermions, i.e. spin 1/2 particles that are identical with
their antiparticles, is of fundamental importance for understanding
the origin of ν-masses and mixing and the underlying symmetries
of particle interactions (see e.g., Ref. 51). The neutrinos with
definite mass νj will be Dirac fermions if the particle interactions
conserve some additive lepton number, e.g., the total lepton charge
L = Le + Lμ + Lτ . If no lepton charge is conserved, νj will be
Majorana fermions (see e.g., Ref. 29). The massive neutrinos are
predicted to be of Majorana nature by the see-saw mechanism of
neutrino mass generation [3]. The observed patterns of neutrino
mixing and of neutrino mass squared differences can be related to
Majorana massive neutrinos and the existence of an approximate
symmetry in the lepton sector corresponding, e.g., to the conservation
of the lepton charge L′ = Le − Lμ − Lτ [123]. Determining the
nature of massive neutrinos νj is one of the fundamental and most
challenging problems in the future studies of neutrino mixing.

The Majorana nature of massive neutrinos νj manifests itself in the
existence of processes in which the total lepton charge L changes by
two units: K+ → π− + μ+ + μ+, μ− + (A, Z) → μ+ + (A, Z − 2), etc.
Extensive studies have shown that the only feasible experiments having
the potential of establishing that the massive neutrinos are Majorana
particles are at present the experiments searching for (ββ)0ν -decay:
(A, Z) → (A, Z + 2) + e− + e− (see e.g., Ref. 124). The observation of
(ββ)0ν -decay and the measurement of the corresponding half-life with
sufficient accuracy, would not only be a proof that the total lepton
charge is not conserved, but might also provide unique information
on the i) type of neutrino mass spectrum (see, e.g., Ref. 125), ii)
Majorana phases in U [114,126] and iii) the absolute scale of neutrino
masses (for details see Ref. 124 to Ref. 127 and references quoted
therein).

Under the assumptions of 3-ν mixing, of massive neutrinos νj

being Majorana particles, and of (ββ)0ν -decay generated only by
the (V-A) charged current weak interaction via the exchange of the
three Majorana neutrinos νj having masses mj � few MeV, the
(ββ)0ν -decay amplitude has the form (see, e.g., Ref. 29 and Ref. 124):
A(ββ)0ν

∼= <m> M , where M is the corresponding nuclear matrix
element which does not depend on the neutrino mixing parameters,
and

|<m>| =
∣∣∣m1U

2
e1 + m2U

2
e2 + m3U

2
e3

∣∣∣
=

∣∣∣(m1c
2
12 + m2s

2
12e

iα21

)
c213 + m3s

2
13e

i(α31−2δ)
∣∣∣ , (13.87)
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Figure 13.11: The effective Majorana mass |<m>| (including
a 2σ uncertainty) as a function of min(mj). The figure is obtained
using the best fit values and 1σ errors of Δm2

21, sin2 θ12, and
|Δm2

31| ∼= |Δm2
32| from Ref. 112, fixed sin2 θ13 = 0.01 and δ = 0.

The phases α21,31 are varied in the interval [0,π]. The predictions
for the NH, IH and QD spectra are indicated. The black lines
determine the ranges of values of |<m>| for the different pairs
of CP conserving values of α21,31: (α21, α31)=(0, 0) solid, (0, π)
long dashed, (π, 0) dash-dotted, (π, π) short dashed, lines. The
red regions correspond to at least one of the phases α21,31 and
(α31 − α21) having a CP violating value. (Update by S. Pascoli
of a figure from the last article quoted in Ref. 127.)

is the effective Majorana mass in (ββ)0ν -decay. In the case of CP-
invariance one has [32], η21 ≡ eiα21=±1, η31 ≡ eiα31=±1, e−i2δ=1.
The three neutrino masses m1,2,3 can be expressed in terms of the
two measured Δm2

jk and, e.g., min(mj). Thus, given the neutrino
oscillation parameters Δm2

21, sin2 θ12, Δm2
31 and sin2 θ13, |<m>| is

a function of the lightest neutrino mass min(mj), the Majorana (and
Dirac) CP violation phases in U and of the type of neutrino mass
spectrum. In the case of NH, IH and QD spectrum we have (see, e.g.,
Ref. 114 and Ref. 127):

|<m>| ∼=
∣∣∣∣
√

Δm2
21s

2
12c

2
13 +

√
Δm2

31s
2
13e

i(α31−α21−2δ)

∣∣∣∣ , NH ,

(13.88)

|<m>| ∼= m̃
(
1 − sin2 2θ12 sin2 α21

2

) 1
2

, IH (IO) and QD , (13.89)

where m̃ ≡
√

Δm2
23 + m2

3 and m̃ ≡ m0 for IH (IO) and QD
spectrum, respectively. In Eq. (13.89) we have exploited the fact
that sin2 θ13 	 cos 2θ12. The CP conserving values of the Majorana
phases (α31 − α21) and α21 determine the ranges of possible values
of |<m>|, corresponding to the different types of neutrino mass
spectrum. Using the best fit values of neutrino oscillation parameters,
Eq. (13.78) to Eq. (13.80), and the upper limit on θ13, Eq. (13.83),
one finds that: i) |<m>|� 0.005 eV in the case of NH spectrum;

ii)
√

Δm2
23 cos 2θ12 � |<m>|�

√
Δm2

23, or 10−2 eV � |<m>|� 0.05
eV in the case of IH spectrum; iii) m0 cos 2θ12 � |<m>|�m0, or
0.03 eV � |<m>|� m0 eV, m0 � 0.10 eV, in the case of QD spectrum.
The difference in the ranges of |<m>| in the cases of NH, IH and QD
spectrum opens up the possibility to get information about the type of
neutrino mass spectrum from a measurement of |<m>| [125]. The
predicted (ββ)0ν -decay effective Majorana mass |<m>| as a function
of the lightest neutrino mass min(mj) is shown in Fig. 13.11.

13.8. Outlook

After the spectacular experimental progress made in the studies of
neutrino oscillations, further understanding of the pattern of neutrino
masses and neutrino mixing, of their origins and of the status of CP
symmetry in the lepton sector requires an extensive and challenging
program of research. The main goals of such a research program
include:

• Determining the nature - Dirac or Majorana, of massive neutrinos
νj . This is of fundamental importance for making progress in
our understanding of the origin of neutrino masses and mixing
and of the symmetries governing the lepton sector of particle
interactions.

• Determination of the sign of Δm2
A (Δm2

31) and of the type of
neutrino mass spectrum.

• Determining or obtaining significant constraints on the absolute
scale of neutrino masses.

• Measurement of, or improving by at least a factor of (5 - 10)
the existing upper limit on, the small neutrino mixing angle
θ13. Together with the Dirac CP-violating phase, the angle θ13

determines the magnitude of CP-violation effects in neutrino
oscillations.

• Determining the status of CP symmetry in the lepton sector.

• High precision measurement of Δm2
21, θ12, and |Δm2

31|, θ23.

• Understanding at a fundamental level the mechanism giving rise
to neutrino masses and mixing and to Ll−non-conservation. This
includes understanding the origin of the patterns of ν-mixing
and ν-masses suggested by the data. Are the observed patterns
of ν-mixing and of Δm2

21,31 related to the existence of a new
fundamental symmetry of particle interactions? Is there any
relation between quark mixing and neutrino mixing, e.g., does
the relation θ12 + θc=π/4, where θc is the Cabibbo angle, hold?
What is the physical origin of CP violation phases in the neutrino
mixing matrix U? Is there any relation (correlation) between
the (values of) CP violation phases and mixing angles in U?
Progress in the theory of neutrino mixing might also lead to a
better understanding of the mechanism of generation of baryon
asymmetry of the Universe.

The successful realization of this research program would be
a formidable task and would require many years. We are at the
beginning of the “road” leading to a comprehensive understanding of
the patterns of neutrino masses and mixing and of their origin.
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(1980).

4. B.T. Cleveland et al., Astrophys. J. 496, 505 (1988).
5. Y. Fukuda et al., [Kamiokande Collab.], Phys. Rev. Lett. 77,

1683 (1996).
6. J.N. Abdurashitov et al., Phys. Rev. C80, 015807 (2009).
7. P. Anselmann et al., Phys. Lett. B285, 376 (1992).
8. W. Hampel et al., Phys. Lett. B447, 127 (1999).
9. M. Altmann et al., Phys. Lett. B616, 174 (2005).

10. S. Fukuda et al., [Super-Kamiokande Collab.], Phys. Lett.
B539, 179 (2002).

11. Q.R. Ahmad et al., [SNO Collab.], Phys. Rev. Lett. 87, 071301
(2001).

12. Q.R. Ahmad et al., [SNO Collab.], Phys. Rev. Lett. 89, 011301
(2002).



184 13. Neutrino mixing

13. Y. Fukuda et al., [Super-Kamiokande Collab.], Phys. Rev. Lett.
81, 1562 (1998).

14. Y. Ashie et al., [Super-Kamiokande Collab.], Phys. Rev. Lett.
93, 101801 (2004).

15. K. Eguchi et al., [KamLAND Collab.], Phys. Rev. Lett. 90,
021802 (2003).

16. T. Araki et al., [KamLAND Collab.], Phys. Rev. Lett. 94,
081801 (2005).

17. B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957) and 34, 247
(1958).

18. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28,
870 (1962).

19. D. Karlen in RPP2010.
20. M.H. Ahn et al., [K2K Collab.], Phys. Rev. D74, 072003 (2006).
21. D.G. Michael et al., [MINOS Collab.], Phys. Rev. Lett. 97,

191801 (2006).
22. P. Adamson et al., [MINOS Collab.], Phys. Rev. Lett. 101,

131802 (2008).
23. A. Aguilar et al., Phys. Rev. D64, 112007 (2001).
24. A.A. Aguilar-Arevalo et al., Phys. Rev. Lett. 98, 231801 (2007).
25. L. Wolfenstein, Phys. Rev. D17, 2369 (1978).
26. S.P. Mikheev and A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913

(1985); Nuovo Cimento 9C, 17 (1986).
27. E. Majorana, Nuovo Cimento 5, 171 (1937).
28. Majorana particles, in contrast to Dirac fermions, are their own

antiparticles. An electrically charged particle (like the electron)
cannot coincide with its antiparticle (the positron) which carries
the opposite non-zero electric charge.

29. S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59, 671 (1987).
30. S.M. Bilenky, J. Hosek, and S.T. Petcov, Phys. Lett. B94, 495

(1980).
31. J. Schechter and J.W.F. Valle, Phys. Rev. D23, 2227 (1980);

M. Doi et al., Phys. Lett. B102, 323 (1981).
32. L. Wolfenstein, Phys. Lett. B107, 77 (1981); S.M. Bilenky, N.P.

Nedelcheva, and S.T. Petcov, Nucl. Phys. B247, 61 (1984); B.
Kayser, Phys. Rev. D30, 1023 (1984).

33. S. Nussinov, Phys. Lett. B63, 201 (1976); B. Kayser, Phys.
Rev. D24, 110 (1981); J. Rich, Phys. Rev. D48, 4318 (1993);
H. Lipkin, Phys. Lett. B348, 604 (1995); W. Grimus and
P. Stockinger, Phys. Rev. D54, 3414 (1996); L. Stodolski,
Phys. Rev. D58, 036006 (1998); W. Grimus, P. Stockinger,
and S. Mohanty, Phys. Rev. D59, 013011 (1999); L.B. Okun,
Surv. High Energy Physics 15, 75 (2000); J.-M. Levy,
hep-ph/0004221 and arXiv:0901.0408; A.D. Dolgov, Phys.
Reports 370, 333 (2002); C. Giunti, Phys. Scripta 67, 29
(2003) and Phys. Lett. B17, 103 (2004); M. Beuthe, Phys.
Reports 375, 105 (2003); H. Lipkin, Phys. Lett. B642, 366
(2006); S.M. Bilenky, F. von Feilitzsch, and W. Potzel, J. Phys.
G34, 987 (2007); C. Giunti and C.W. Kim, Fundamentals of
Neutrino Physics and Astrophysics (Oxford University Press,
Oxford, 2007); E.Kh. Akhmedov, J. Kopp, and M. Lindner,
JHEP 0805, 005 (2008); E.Kh. Akhmedov and A.Yu. Smirnov,
Phys. Atom. Nucl. 72, 1363 (2009).

34. For the subtleties involved in the step leading from Eq. (13.1)
to Eq. (13.5) see, e.g., Ref. 35.

35. A.G. Cohen, S.L. Glashow, and Z. Ligeti, arXiv:0810.4602.
36. The neutrino masses do not exceed approximately 1 eV, mj � 1,

while in neutrino oscillation experiments neutrinos with energy
E � 100 keV are detected.

37. S.M. Bilenky and B. Pontecorvo, Phys. Reports 41, 225 (1978).
38. In Eq. (13.9) we have neglected the possible instability of

neutrinos νj . In most theoretical models with nonzero neutrino
masses and neutrino mixing, the predicted half life-time of
neutrinos with mass of 1 eV exceeds the age of the Universe,
see, e.g., S.T. Petcov, Yad. Fiz. 25, 641 (1977), (E) ibid., 25
(1977) 1336 [Sov. J. Nucl. Phys. 25, 340 (1977), (E) ibid., 25,
(1977), 698], and Phys. Lett. B115, 401 (1982); W. Marciano
and A.I. Sanda, Phys. Lett. B67, 303 (1977); P. Pal and L.
Wolfenstein, Phys. Rev. D25, 766 (1982).

39. L.B. Okun (2000), J.-M. Levy (2000) and H. Lipkin (2006)
quoted in Ref. 33 and Ref. 35.

40. The articles by L. Stodolsky (1998) and H. Lipkin (1995) quoted
in Ref. 33.

41. V. Gribov and B. Pontecorvo, Phys. Lett. B28, 493 (1969).
42. N. Cabibbo, Phys. Lett. B72, 333 (1978).
43. V. Barger et al., Phys. Rev. Lett. 45, 2084 (1980).
44. P. Langacker et al., Nucl. Phys. B282, 589 (1987).
45. P.I. Krastev and S.T. Petcov, Phys. Lett. B205, 84 (1988).
46. C. Jarlskog, Z. Phys. C29, 491 (1985).
47. A. De Rujula et al., Nucl. Phys. B168, 54 (1980).
48. S. Goswami et al., Nucl. Phys. (Proc. Supp.) B143, 121 (2005).
49. These processes are important, however, for the supernova

neutrinos see, e.g., G. Raffelt, Proc. International School of
Physics “Enrico Fermi”, CLII Course “Neutrino Physics”, 23
July-2 August 2002, Varenna, Italy [hep-ph/0208024]), and
articles quoted therein.

50. We standardly assume that the weak interaction of the flavour
neutrinos νl and antineutrinos ν̄l is described by the Standard
Model (for alternatives see, e.g., [25]; M.M. Guzzo et al., Phys.
Lett. B260, 154 (1991); E. Roulet, Phys. Rev. D44, R935
(1991) and Ref. 51).

51. R. Mohapatra et al., Rept. on Prog. in Phys. 70, 1757 (2007);
A. Bandyopadhyay et al., Rept. on Prog. in Phys. 72, 106201
(2009).

52. V. Barger et al., Phys. Rev. D22, 2718 (1980).
53. P. Langacker, J.P. Leveille, and J. Sheiman, Phys. Rev. D27,

1228 (1983).
54. The difference between the νμ and ντ indices of refraction arises

at one-loop level and can be relevant for the νμ − ντ oscillations
in very dense media, like the core of supernovae, etc.; see
F.J. Botella, C.S. Lim, and W.J. Marciano, Phys. Rev. D35,
896 (1987).

55. The relevant formulae for the oscillations between the νe and a
sterile neutrino νs, νe ↔ νs, can be obtained from those derived
for the case of νe ↔ νμ(τ) oscillations by [44,53] replacing Ne

with (Ne − 1/2Nn), Nn being the neutron number density in
matter.

56. T.K. Kuo and J. Pantaleone, Phys. Lett. B198, 406 (1987).
57. A.D. Dziewonski and D.L. Anderson, Physics of the Earth and

Planetary Interiors 25, 297 (1981).
58. The first studies of the effects of Earth matter on the oscillations

of neutrinos were performed numerically in [52,59] and in E.D.
Carlson, Phys. Rev. D34, 1454 (1986); A. Dar et al., ibid.,
D35, 3607 (1988); in [45] and in G. Auriemma et al., ibid.,
D37, 665 (1988).

59. A.Yu. Smirnov and S.P. Mikheev, Proc. of the VIth Moriond
Workshop (eds. O. Fackler, J. Tran Thanh Van, Frontières,
Gif-sur-Yvette, 1986), p. 355.

60. S.T. Petcov, Phys. Lett. B434, 321 (1998), (E) ibid. B444, 584
(1998).

61. S.T. Petcov, Phys. Lett. B214, 259 (1988); “Earth Matter
Effects in the Atmospheric and Solar Neutrino Transitions,” Talk
given at the Workshop “Neutrino Physics and Astrophysics,”
Aspen Center for Physics, June 29 - July 12, 1998, Aspen,
U.S.A.

62. E.Kh. Akhmedov et al., Nucl. Phys. B542, 3 (1999).
63. M.V. Chizhov, M. Maris, and S.T. Petcov, hep-ph/9810501; see

also: S.T. Petcov, Nucl. Phys. (Proc. Supp.) B77, 93 (1999)
(hep-ph/9809587).

64. J. Hosaka et al., [Super-Kamiokande collab.], Phys. Rev. D74,
032002 (2006).

65. E.Kh. Akhmedov, Nucl. Phys. B538, 25 (1999).
66. M.V. Chizhov and S.T. Petcov, Phys. Rev. Lett. 83, 1096

(1999) and Phys. Rev. Lett. 85, 3979 (2000); Phys. Rev. D63,
073003 (2001).
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